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Bryonia cretica L., is a Cucurbitaceae plant growing
widely in the western Mediterranean coastal region and in
Egypt.1) This plant has been used in folk medicine as a dras-
tic purgative, emetic, bitter tonic and anti-diabetic agent.2)

Previous chemical study of B. cretica revealed the presence
of cucurbitacins B (3), E (5), I, and L.3) In the course of our
studies on bioactive constituents from Egyptian natural medi-
cines,4—15) the 90% aqueous ethanolic (90% EtOH) extract
from the roots of B. cretica showed strong inhibition of the
proliferation of human leukemia U937 cells (IC50 value at
72 h�0.035 mg/ml).

Here we describe the chemical elucidation of two new cu-
curbitane-type triterpene glycosides, bryoniaosides A (1) and
B (2), and anti-proliferative effects of several cucurbitane-
type triterpenes (3—9) on U937 cells together with several

structural requirements for the activity.

Results and Discussion
The 90% EtOH extract of the roots of B. cretica (11.5%

from the dried roots) was partitioned into an ethyl acetate
(EtOAc)–H2O (1 : 1, v/v) mixture to furnish the EtOAc-solu-
ble fraction and an aqueous layer. The aqueous layer was ex-
tracted with n-butanol (n-BuOH) to give n-BuOH and H2O-
soluble fractions. As shown in Table 1, the EtOAc-soluble
fraction exhibited marked activity (IC50 value at 72 h�
0.050 mg/ml), but the n-BuOH- and H2O-soluble fraction
lacked the activity (IC50 values at 72 h�1 mg/ml).

The EtOAc-soluble fraction was subjected to normal-
phase and reversed-phase silica gel column chromatography
and repeated HPLC to give two new cucurbitane-type triter-

Cucurbitane-Type Triterpenes with Anti-proliferative Effects on U937
Cells from an Egyptian Natural Medicine, Bryonia cretica: Structures of
New Triterpene Glycosides, Bryoniaosides A and B

Hisashi MATSUDA,a Souichi NAKASHIMA,a Osama Bashir ABDEL-HALIM,b Toshio MORIKAWA,c and
Masayuki YOSHIKAWA*,a

a Kyoto Pharmaceutical University; Misasagi, Yamashina-ku, Kyoto 607–8412, Japan: b College of Pharmacy, Taibah
University; Almadinah Almonawwarah, 30001, King Saudi Arabia: and c Pharmaceutical Research and Technology
Institute, Kinki University; 3–4–1 Kowakae, Higashi-osaka, Osaka 577–8502, Japan.
Received December 25, 2009; accepted February 1, 2010; published online February 10, 2010

The 90% aqueous ethanol extract of an Egyptian natural medicine, the roots of Bryonia cretica L., was
found to exhibit a strong inhibitory effect on the proliferation of human leukemia U937 cells. By bioassay-guided
fractionation, we isolated two new cucurbitane-type triterpene glycosides, bryoniaosides A and B, were isolated
from the roots of Bryonia cretica L. together with 16 known cucurbitane-type triterpenes and glycosides. The
chemical structures of bryoniaosides A and B were determined on the basis of chemical and spectroscopic evi-
dence. Effects of principal cucurbitane-type triterpenes (cucurbitacins B, D, E, and J, 23,24-dihydrocucur-
bitacins B and E, and hexanorcucurbitacin D) on proliferation of the cells were examined. Cucurbitacins B and
E showed the greater cytotoxic effects with IC50 values of 9.2 and 16 nM after 72 h, and their IC50 values were
equivalent to that of camptothecin. An aa ,bb-conjugated ketone moiety at the 22—24-positions and an acetoxy
group at the 25-position are essential for the strong activity.

Key words Bryonia cretica; bryoniaoside; cucurbitacin; U937 cell; structural requirement; anti-proliferative effect

Chem. Pharm. Bull. 58(5) 747—751 (2010)

© 2010 Pharmaceutical Society of Japan∗ To whom correspondence should be addressed. e-mail: myoshika@mb.kyoto-phu.ac.jp

Chart 1. Chemical Structures of Cucurbitane-Type Triterpenes (1—9) from B. cretica



pene glycosides, bryoniaosides A (1, 0.0091%) and B (2,
0.0028%), together with 16 known cucurbitane-type triter-
penes, cucurbitacins B16—18) (3, 0.020%), D16,17,19,20) (4,
0.015%), E16,17) (5, 0.011%), G20) (0.0051%), H20) (0.015%),
and J21,22) (8, 0.017%), 23,24-dihydrocucurbitacins B16,23)

(6, 0.0035%), D19) (0.011%), and E16,19) (7, 0.0043%), 3-epi-
cucurbitacins B24) (0.0024%) and D25) (0.0037%), hexanor-
cucurbitacin D20) (9, 0.0024%), and 2-O-b-D-glucopyranosyl-
cucurbitacins B18,26,27) (0.030%), D27) (0.0057%), I28—30)

(0.0039%), and J22) (0.0035%).
Structures of Bryoniaosides A (1) and B (2) Bryoniao-

side A (1) was obtained as a white powder and exhibited a
positive optical rotation ([a]D

24 �34.4° in MeOH). The IR
spectrum of 1 showed absorption bands at 1693 and
1640 cm�1 ascribable to carbonyl and olefin functions, and
broad bands at 3540 and 1028 cm�1, suggestive of a glyco-
side structure. In the positive-ion fast atom bombardment
(FAB)-MS of 1, a quasimolecular ion peak was observed at
m/z 803 (M�Na)�, and a high-resolution positive-ion FAB-
MS analysis revealed the molecular formula of 1 to be
C42H68O13. The acid hydrolysis of 1 with 1.0 M hydrochloric
acid (HCl) liberated L-rhamnose and D-glucose, which were
identified by HPLC analysis using an optical rotation detec-
tor. The proton and carbon signals in the 1H- and 13C-NMR
(Table 2, CD3OD) spectra of 1, which were assigned based
on various NMR experiments,31) showed signals assignable
to eight methyls [d 0.90, 1.02, 1.12, 1.25, 1.25, 1.25, 1.26,
1.26 (3H each, all s, H3-18, 29, 30, 26, 27, 28, 19, 21)], a me-
thine [d 3.41 (1H, m, H-3)] and two quaternary carbons [dC

71.2 (C-25), 75.8 (C-20)] bearing an oxygen function, a
trisubstituted olefin [d 5.67 (1H, br d, J�ca. 6 Hz, H-6)], and
an trans-olefin pair [d 5.59 (1H, m, H-23), 5.60 (1H, d,
J�15.9 Hz, H-24)], together with a b-glucopyranosyl moiety
and a a-rhamnopyranosyl moiety [d 1.18 (3H, d, J�6.1 Hz,
Rha-H3-6), 4.37 (1H, d, J�7.2 Hz, Glc-H-1), 5.52 (1H, d,
J�1.5 Hz, Rha-H-1)]. The carbon skeleton and the positions
of functional groups were revealed by the heteronuclear mul-
tiple-bond correlations (HMBC) experiment, which showed
long-range correlations between the following protons and
carbons (Glc-H-1 and C-3; Rha-H-1 and C-25) (Fig. 1).
Next, the stereostructure of the aglycone part of 1 was char-
acterized by nuclear Overhauser enhancement spectroscopy
(NOESY) experiment, which showed NOE correlations be-
tween the following proton pairs (H-8 and H3-18, 19; H-10
and H3-28, H3-30; H-17 and H3-30). The stereostructure of
the 20-position in 1 was deduced by comparison of 13C-NMR

data around the 20-position of 1 with those of related triter-
penes.32—35) On the basis of this evidence, the structure of
bryoniaoside A (1) was determined to be as shown.
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Table 1. Inhibitory Effects of the 90% EtOH Extract and Its Fractions from B. cretica on Proliferation of U937 Cells

Incubation
Conc. (mg/ml)

IC50

time
0 0.01 0.03 0.1 0.3 1.0

(mg/ml)

Inhibition (%) 
90% EtOH ext. 24 h 0.0�2.8 �6.4�4.6 �9.7�5.5 37.2�2.4** 62.4�1.6** 73.0�1.1** 0.17

48 h 0.0�1.4 �5.4�2.5 — 48.3�5.9** 82.7�1.0** 87.9�0.9** ca. 0.10
72 h 0.0�1.4 3.2�2.1 46.7�4.3** 77.8�0.6** 92.2�0.4** 94.7�0.4** 0.035

EtOAc-soluble fr. 24 h 0.0�3.8 15.3�4.3** �2.5�2.7 19.3�3.0** 46.0�2.6** 63.1�0.5** 0.34
48 h 0.0�6.4 12.8�13.9 12.2�6.8 64.7�3.5** 87.0�0.6** 90.5�0.4** 0.075
72 h 0.0�2.7 �0.5�2.1 26.1�1.4** 77.1�0.7** 92.3�0.3** 93.7�0.3** 0.050

BuOH-soluble fr. 72 h 0.0�1.2 �3.1�1.9 2.2�3.8 �3.2�1.4 �4.0�1.6 11.4�2.3** —
H2O-soluble fr. 72 h 0.0�0.8 7.6�4.1 9.3�0.5* 9.0�0.9 7.9�3.1 0.4�2.0 —

Each value represents the mean�S.E.M. (n�4). Significantly different from the control ∗ p�0.05, ∗∗ p�0.01.

Table 2. 13C-NMR Data (125 MHz, CD3OD) of Bryoniaosides A (1) and
B (2)

Position 1 2

1 22.5 22.6
2 29.5 30.3
3 86.8 87.4
4 42.7 40.7
5 140.5 143.6
6 120.6 120.5
7 24.8 25.2
8 44.6 43.9
9 50.9 48.1

10 36.9 37.4
11 218.1 79.3
12 49.9 41.2
13 51.1 49.0
14 50.1 50.7
15 35.0 34.8
16 22.8 27.6
17 51.4 52.4
18 19.4 18.8
19 26.4 26.4
20 75.8 76.3
21 25.7 26.7
22 48.5 48.5
23 123.5 123.8
24 142.5 142.1
25 71.2 71.2
26 29.9a) 29.9a)

27 30.1a) 30.1a)

28 26.7 26.1
29 28.8 28.1
30 20.6 20.0

3-O-Glc
1 105.2 105.1
2 77.0 77.2
3 77.6 77.7
4 72.2 72.1
5 80.1 80.3
6 62.7 62.8

25-O-Rha
1 100.9 101.1
2 72.0 72.1
3 72.2 72.3
4 73.9 73.9
5 69.9 70.0
6 18.7 18.7

a) May be interchangeable within the same column.



Bryoniaoside B (2) was also obtained as a white powder
with negative optical rotation ([a]D

24 �2.6° in MeOH). The
molecular formula, C42H70O13, of 2 was determined from
positive-ion FAB-MS [m/z 805 (M�Na)�] and high-resolu-
tion FAB-MS measurements. The acid hydrolysis of 2 with
1.0 M HCl liberated L-rhamnose and D-glucose, which were
identified by HPLC analysis using an optical rotation detec-
tor. The proton and carbon signals in the 1H- and 13C-NMR
spectra (Table 2, CD3OD) of 2 were superimposable on those
of 1, except for the signals due to the 11-hydroxyl group
{eight methyls [d 1.03, 1.05, 1.12, 1.18, 1.25, 1.25, 1.26,
1.26 (3H each, all s, H3-29, 18, 30, 28, 26, 27, 19, 21)], two

methines [d 3.41 (1H, m, H-3), 3.82 (1H, m, H-11)] and two
quaternary carbons [dC 71.2 (C-25), 76.3 (C-20)] bearing an
oxygen function, a trisubstituted olefin [d 5.56 (1H, br d,
J�ca. 6 Hz, H-6)], and an trans-olefin pair [d 5.60 (1H, d,
J�16.1 Hz, H-24), 5.61 (1H, m, H-23)], together with a b-
glucopyranosyl moiety and a a-rhamnopyranosyl moiety [d
1.18 (3H, d, J�6.1 Hz, Rha-H3-6), 4.36 (1H, d, J�7.5 Hz,
Glc-H-1), 5.50 (1H, d, J�1.5 Hz, Rha-H-1)]}. The planar
structure of 2 was confirmed by 1H–1H correlation spec-
troscopy (COSY) and HMBC experiments (Fig. 1). Finally,
the stereostructure of 2 was characterized by NOESY experi-
ment, which showed the NOE correlations between the fol-
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Fig. 1. 1H–1H COSY and HMBC Correlations 1 and 2

Table 3. Inhibitory Effects of Cucurbitacins B (3), D (4), E (5), and J (8), 23,24-Dihydrocucurbitacins B (6) and E (7), and Hexanorcucurbitacin D (9) on
Proliferation of U937 Cells

Incubation
Conc. (nM) 

IC50

time
0 1 3 10 30 100

(nM)

Cucurbitacin B (3) 24 h 0.0�1.9 9.3�2.4 �16.5�2.5 9.0�2.2* 56.0�0.5** 73.8�0.4** 25
48 h 0.0�3.4 �8.4�1.1 �2.6�2.4 31.1�2.0** 70.5�1.1** 86.4�0.5** 15
72 h 0.0�1.0 24.4�25.1 6.1�1.8 54.2�0.7** 80.0�0.4** 94.1�0.2** 9.2

Cucurbitacin E (5) 24 h 0.0�8.7 �3.1�3.8 �4.2�3.1 �3.8�2.9 50.2�1.0** 68.4�0.1** 29
48 h 0.0�1.0 2.6�0.9 �0.4�1.0 19.3�2.8** 70.5�1.3** 89.8�1.1** 22
72 h 0.0�0.7 15.6�14.1 20.7�17.5 27.8�1.0 84.0�5.9** 97.7�2.9** 16

Camptothecin 24 h 0.0�3.3 �12.6�2.6 �0.6�4.7 6.5�3.2 14.6�4.2* 44.0�2.9** 160a)

48 h 0.0�2.6 �3.0�3.3 3.3�3.3 55.7�2.8** 91.1�0.3** 94.2�0.2** 9.1
72 h 0.0�2.4 1.4�1.3 0.8�2.0 65.7�1.6** 96.7�0.1** 97.3�0.1** 8.6

Incubation
Conc. (mM) 

IC50

time
0 0.01 0.03 0.1 0.3 1

(mM)

Cucurbitacin D (4) 24 h 0.0�1.7 �5.0�0.5 �2.5�2.7 �6.8�4.3 12.1�4.4* 54.2�0.6** 0.89
48 h 0.0�4.9 �4.5�5.3 �4.6�6.7 �12.6�10.3 29.4�8.0** 72.3�4.1** 0.53
72 h 0.0�3.0 4.2�1.9 5.0�1.0 6.2�0.1 48.1�3.6** 88.7�0.5** 0.33

23,24-Dihydrocucurbitacin B (6) 24 h 0.0�7.1 — — — �4.0�10.5 51.3�1.7** ca. 1.0
48 h 0.0�3.6 �3.1�2.1 �12.1�0.6 �2.8�2.5 34.3�6.2** 77.5�0.9** 0.42
72 h 0.0�3.7 8.8�3.1 12.5�2.2** 23.9�1.7** 62.1�1.8** 84.8�0.5** 0.22

Incubation
Conc. (mM) 

IC50

time
0 1 3 10 30 100

(mM)

23,24-Dihydrocucurbitacin E (7) 24 h 0.0�3.7 �7.5�1.9 11.8�4.1* 62.8�1.0** 83.7�0.9** 92.2�0.7** 5.8
48 h 0.0�1.5 �6.5�1.6 26.0�3.7** 83.6�0.6** 96.5�0.7** 97.3�0.1** 4.5
72 h 0.0�0.7 �3.3�1.8 44.0�1.6** 88.4�0.3** 97.3�0.3** 99.1�0.1** 3.3

Cucurbitacin J (8) 24 h 0.0�3.7 �18.8�3.3 8.7�2.9 70.9�1.0** 73.9�1.2** 91.7�0.8** 7.9
48 h 0.0�2.7 �2.9�4.0 49.1�3.9** 86.0�1.2** 90.6�1.1 95.6�0.9** 4.4
72 h 0.0�3.7 10.0�1.3* 62.3�3.5** 92.4�0.1** 95.5�0.1** 99.4�0.1** 2.4

Hexanorcucurbitacin D (9) 24 h 0.0�6.0 — 7.5�4.8 55.4�2.3** 68.7�4.0** 86.9�1.5** 9.4
48 h 0.0�2.8 �3.1�2.6 45.2�2.3** 87.8�0.5** 88.4�0.9** 97.6�0.4** 4.6
72 h 0.0�1.9 12.0�4.9* 60.8�3.7** 91.9�0.3** 94.6�0.5** 98.9�0.1** 2.4

Each value represents the mean�S.E.M. (n�4). Significantly different from the control ∗ p�0.05, ∗∗ p�0.01. a) Inhibition (%) at 300 nM was 57.7�1.1 (p�0.01).



lowing proton pairs (H-8 and H3-18, 19; H-10 and H-11, H3-
28, H3-30; H-11 and H3-30; H-17 and H3-30). Consequently,
the structure of bryoniaoside B (2) was characterized to be as
shown.

Effects of Several Cucurbitane-Type Triterpenes on
Proliferation of U937 Cells Among the constituents iso-
lated, effects of several principal cucurbitane-type triterpenes
(3—9) on the proliferation of U937 cells were examined. As
shown in Table 3, all compounds tested showed concentra-
tion-dependent and time-dependent inhibition of the cell pro-
liferation. The compounds 3 and 5 had the greater effects
with IC50 values at 72 h of 9.2 and 16 nM, respectively, while
the 23,24-dihydro derivatives (6, 7) and the 25-deacetyl de-
rivative (4) were markedly less active with IC50 values at 72 h
of 0.22, 3.3, and 0.33 mM, respectively (Table 3).

Previously, cucurbitacins B (3), E (5), and I and related
compounds were reported to show cytotoxic effects in sev-
eral cell lines including A549, MDA-MB-468, HepG2, and
KB, but not in U937 cells, and their apoptosis-inducing ac-
tivity mediated by the inhibition of Janus kinase (JAK)/signal
transducer and activator of transcription 3 (STAT3) signaling
at a high concentration (1—10 mM).36—41) Bartalis and Ha-
laweish reported that the glycosides of cucurbitacins E (5)
and I were less toxic than the aglycones.36) In addition, Chen
et al. recently reported the importance of an a ,b-unsaturated
ketone in the side chains and the 25-acetoxy group in a pre-
liminary analysis of structure–activity relationships.38) Con-
sistent with the results of these studies,36,38) cucurbitacin E 2-
O-b-D-glucopyranoside from the fruit of Citrullus colocyn-
this15) was not effective less than 30 mM (inhibition:
�7.7�1.3% at 30 mM after 72 h). Our results also demon-
strate that an a ,b-conjugated ketone moiety at the 22—24
positions and an acetoxy group at the 25 position are essen-
tial for the greater activity [3 (9.2 nM)�6 (0.22 mM); 5
(16 nM)�7 (3.3 mM); 3 (9.2 nM)�4 (0.33 mM)]. In addition,
the structure of the A ring is also important [3 (9.2 nM)�5
(16 nM); 6 (0.22 mM)�7 (3.3 mM)].

In the present study, cucurbitacins B (3) and E (5) from B.
cretica showed strong cytotoxic effects in U937 cells at low
concentrations (IC50�9.2 and 16 nM), and their IC50 values
were equivalent to that of camptothecin. The mechanism of
action of cucurbitane-type triterpenes, including JAK/STAT3
signaling, should be examined further using U937 cells.

Experimental
The following instruments were used to obtain physical data: specific ro-

tations, Horiba SEPA-300 digital polarimeter (l�5 cm); IR spectra, Shi-
madzu FTIR-8100 spectrometer; FAB-MS and high-resolution FAB-MS,
JEOL JMS-SX 102A mass spectrometer; 1H-NMR spectra, JNM-LA500
(500 MHz); 13C-NMR spectra, JNM-LA500 (125 MHz) spectrometer with
tetramethylsilane as an internal standard; HPLC detector, Shimadzu RID-6A
refractive index detector; HPLC column, YMC-Pack ODS-A (250�4.6 mm
i.d.) and (250�20 mm i.d.) columns were used for analytical and preparative
purposes, respectively.

The following materials were used for chromatography: ordinary-phase
column chromatography; Silica gel BW-200 (Fuji Silysia Chemical, Ltd.,
150—350 mesh), reversed-phase column chromatography; Chromatorex
ODS DM1020T (Fuji Silysia Chemical, Ltd., 100—200 mesh); TLC, pre-
coated TLC plates with Silica gel 60F254 (Merck, normal-phase) and Silica
gel RP-18 F254S (Merck, reversed-phase); HPTLC, pre-coated TLC plates
with Silica gel 60F254 (Merck, normal-phase), and Silica gel RP-18 WF254S

(Merck, reversed-phase). Detection was achieved by spraying with 1%
Ce(SO4)2–10% aqueous H2SO4 followed by heating.

Plant Material The roots of Bryonia cretica were identified by one of
the authors, Professor Osama B. Abdel-Halim (College of Pharmacy, Taibah

University, Saudi Arabia). A voucher specimen (No. Y-03) of this natural
medicine is on file in our laboratory.

Extraction and Isolation The dried roots of B. cretica (1.0 kg) was
finely cut and extracted three times with 90% aqueous ethanol under reflux
for 3 h. Evaporation of the solvent under reduced pressure gave the aqueous
ethanolic extract (115.0 g, 11.5% from dried roots). The aqueous ethanolic
extract (100.0 g) was partitioned in an EtOAc–H2O (1 : 1, v/v) mixture. The
aqueous layer was extracted with n-BuOH and removal of the solvent in
vacuo from the EtOAc-, n-BuOH-, and H2O-soluble portions yielded 35.0 g
(4.0%), 33.0 g (3.8%), and 32.0 g (3.7%) of the residue, respectively. The
EtOAc-soluble fraction (30.0 g) was subjected to ordinary-phase silica gel
column chromatography [900 g, n-hexane–EtOAc (10 : 1—5 : 1—1 : 1—
1 : 10, v/v)–CHCl3–MeOH–H2O (10 : 3 : 1—7 : 3 : 1, v/v/v, lower layer)–
MeOH] to afford 10 fractions [Fr. 1 (6.8 g), Fr. 2 (0.6 g), Fr. 3 (1.5 g), Fr. 4
(3.1 g), Fr. 5 (4.4 g), Fr. 6 (2.2 g), Fr. 7 (4.1 g), Fr. 8 (2.8 g), Fr. 9 (2.3 g), 
Fr. 10 (2.1 g)]. Fraction 2 (0.6 g) was separated by reversed-phase silica 
gel column chromatography [18 g, MeOH–H2O (40 : 60—50 : 50—70 : 30,
v/v)–MeOH] and finally HPLC [MeOH–H2O (55 : 45, v/v) or CH3CN–H2O
(40 : 60, v/v)] to give cucurbitacin E (5, 85 mg, 0.011%) and 23,24-dihy-
drocucurbitacins B (6, 26 mg, 0.0035%) and E (7, 32 mg, 0.0043%). Frac-
tion 3 (1.5 g) was purified by HPLC [MeOH–H2O (55 : 45, v/v)] to give 
cucurbitacin B (3, 150 mg, 0.020%) and 3-epi-cucurbitacin B (18 mg,
0.0024%). Fraction 4 (3.1 g) was separated by reversed-phase silica gel 
column chromatography [95 g, MeOH–H2O (40 : 60—50 : 50—70 : 30,
v/v)–MeOH] and finally HPLC [MeOH–H2O (50 : 50, v/v) or MeOH–H2O
(55 : 45, v/v)] to give cucurbitacin D (4, 110 mg, 0.015%) and 23,24-
dihydrocucurbitacin D (80 mg, 0.011%). Fraction 5 (4.4 g) was separated 
by reversed-phase silica gel column chromatography [95 g, MeOH–H2O
(40 : 60—50 : 50—80 : 20, v/v)–MeOH] and finally HPLC [MeOH–H2O
(50 : 50, v/v) or MeOH–H2O (55 : 45, v/v)] to give cucurbitacins H (112 mg,
0.015%) and J (8, 130 mg, 0.017%) and hexanorcucurbitacin D (9, 18 mg,
0.0024%). Fraction 6 (2.2 g) was separated by reversed-phase silica gel 
column chromatography [70 g, MeOH–H2O (40 : 60—50 : 50—80 : 20,
v/v)–MeOH] and finally HPLC [CH3CN–H2O (30 : 70, v/v)] to give 3-
epi-cucurbitacin D (28 mg, 0.0037%). Fraction 7 (4.1 g) was separated by 
reversed-phase silica gel column chromatography [85 g, MeOH–H2O
(40 : 60—50 : 50—80 : 20, v/v)–MeOH] and finally HPLC [CH3CN–H2O
(30 : 70, v/v)] to give cucurbitacin G (38 mg, 0.0051%) and 2-O-b-D-
glucopyranosylcucurbitacin B (220 mg, 0.030%). Fraction 8 (2.8 g) was 
separated by reversed-phase silica gel column chromatography [70 g,
MeOH–H2O (30 : 70—50 : 50—80 : 20, v/v)–MeOH] and finally HPLC
[CH3CN–H2O (30 : 70 or 40 : 60, v/v)] to give 2-O-b-D-glucopyranosylcu-
curbitacins D (43 mg, 0.0057%) and I (29 mg, 0.0039%). Fraction 9 (2.3 g)
was separated by reversed-phase silica gel column chromatography [70 g,
MeOH–H2O (30 : 70—50 : 50—70 : 30, v/v)–MeOH] and finally HPLC
[CH3CN–H2O (30 : 70, v/v)] to give 2-O-b-D-glucopyranosylcucurbitacin J
(26 mg, 0.0035%). Fraction 10 (2.1 g) was separated by reversed-phase silica
gel column chromatography [70 g, MeOH–H2O (30 : 70—50 : 50—80 : 20,
v/v)–MeOH] and finally HPLC [MeOH–H2O (55 : 45 or 65 : 35, v/v)] to give
bryoniaosides A (1, 68 mg, 0.0091%) and B (2, 21 mg, 0.0028%).

Bryoniaoside A (1): A white powder, [a]D
24 �34.4° (c�2.50, MeOH).

High-resolution positive-ion FAB-MS: Calcd for C42H68O13Na (M�Na)�:
803.4558. Found: 803.4554. IR (KBr): 3540, 1693, 1640, 1028 cm�1. 1H-
NMR (500 MHz, CD3OD) d : 0.90, 1.02, 1.12, 1.25, 1.25, 1.25, 1.26, 1.26
(3H each, all s, H3-18, 29, 30, 26, 27, 28, 19, 21), 1.18 (3H, d, J�6.1 Hz,
Rha-H3-6), 1.92 (1H, br d, J�ca. 8 Hz, H-8), 3.41 (1H, m, H-3), [3.62 (1H,
dd, J�5.2, 11.7 Hz), 3.80 (1H, dd, J�2.1, 11.7 Hz), Glc-H2-6], 4.37 (1H, d,
J�7.2 Hz, Glc-H-1), 5.52 (1H, d, J�1.5 Hz, Rha-H-1), 5.59 (1H, m, H-23),
5.60 (1H, d, J�15.9 Hz, H-24), 5.67 (1H, br d, J�ca. 6 Hz, H-6). 13C-NMR
(125 MHz, CD3OD) dC : given in Table 1. Positive-ion FAB-MS m/z: 803
(M�Na)�.

Bryoniaoside B (2): A white powder, [a]D
24 �2.6° (c�1.00, MeOH).

High-resolution positive-ion FAB-MS: Calcd for C42H70O13Na (M�Na)�:
805.4714. Found: 805.4706. IR (KBr): 3540, 1465, 1220, 1028 cm�1. 1H-
NMR (500 MHz, CD3OD) d : 1.03, 1.05, 1.12, 1.18, 1.25, 1.25, 1.26, 1.26
(3H each, all s, H3-29, 18, 30, 28, 26, 27, 19, 21), 1.18 (3H, d, J�6.1 Hz,
Rha-H3-6), 1.66 (1H, br d, J�ca. 8 Hz, H-8), 3.41 (1H, m, H-3), [3.63 (1H,
dd, J�5.5, 12.0 Hz), 3.80 (1H, dd, J�2.0, 12.0 Hz), Glc-H2-6], 3.82 (1H, m,
H-11), 4.36 (1H, d, J�7.5 Hz, Glc-H-1), 5.50 (1H, d, J�1.5 Hz, Rha-H-1),
5.56 (1H, br d, J�ca. 6 Hz, H-6), 5.60 (1H, d, J�16.1 Hz, H-24), 5.61 (1H,
m, H-23). 13C-NMR (125 MHz, CD3OD) dC: given in Table 1. Positive-ion
FAB-MS m/z: 805 (M�Na)�.

Acid Hydrolysis of 1 and 2 A solution of 1 or 2 (each 2 mg) in 1 M HCl
(1 ml) was heated under reflux for 3 h. After cooling, the reaction mixture

750 Vol. 58, No. 5



was neutralized with Amberlite IRA-400 (OH� form) and the resin was fil-
tered. On removal of the solvent from the filtrate under reduced pressure, the
residue was partitioned in an EtOAc–H2O (1 : 1, v/v) mixture giving an
EtOAc-soluble fraction and an aqueous phase. The solvent was removed in
vacuo from the aqueous phase, which was subjected to HPLC analysis under
the following conditions: HPLC column, Kaseisorb LC NH2-60-5, 4.6 mm
i.d.�250 mm (Tokyo Kasei Co., Ltd., Tokyo, Japan); detection, optical rota-
tion [Shodex OR-2 (Showa Denko Co., Ltd., Tokyo, Japan); mobile phase,
CH3CN–H2O (85 : 15, v/v); flow rate, 0.8 ml/min]. The identification of L-
rhamnose (i) and D-glucose (ii) from 1 and 2 present in the aqueous layer
was carried out by comparing their retention time and optical rotation with
those of authentic samples [tR: (i) 7.8 min (negative optical rotation) and (ii)
13.9 min (positive optical rotation)], respectively.

Cell Culture Human leukemia U937 cells (Cell No. JCRB9021) were
obtained from Health Science Research Resources Bank (Osaka, Japan).
They were maintained in RPMI1640 medium supplemented with 10% fetal
bovine serum (FBS), 100 units/ml penicillin, and 100 mg/ml streptomycin.

Cytotoxicity Cytotoxicity was assayed as described previously.42)

Briefly, after a 20, 44, or 68-h incubation of U937 cells (5�103 cells/
100 m l/well) with test compounds in RPMI1640 medium supplemented with
10% FBS in 96-well microplates, 10 m l of WST-8 solution (Cell Counting
Kit-8TM) was added to each well. After a further 4 h in culture, the optical
density of the water-soluble formazan produced by the cells was measured
with a microplate reader (Model 550, Bio-Rad) at 450 nm (reference:
655 nm). Camptothecin was used as a reference compound. Inhibition (%)
was calculated with the following formula and the IC50 value was deter-
mined graphically.

inhibition (%)�(A�B)/A�100

A and B indicate the optical density of vehicle and test compound-treated
groups (n�4).

Statistical Analysis For the statistical analysis, a one-way analysis of
variance followed by Dunnett’s test was used (Tables 1, 3). Probability (p)
values less than 0.05 were considered significant.
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