Cucurbitane-Type Triterpenes with Anti-proliferative Effects on U937 Cells from an Egyptian Natural Medicine, *Bryonia cretica***: Structures of New Triterpene Glycosides, Bryoniaosides A and B**

Hisashi Matsuda," Souichi Nakashima," Osama Bashir Abdel-Halim,^b Toshio Morikawa,^c and Masayuki YOSHIKAWA*,*^a*

aKyoto Pharmaceutical University; Misasagi, Yamashina-ku, Kyoto 607–8412, Japan: bCollege of Pharmacy, Taibah University; Almadinah Almonawwarah, 30001, King Saudi Arabia: and ^c Pharmaceutical Research and Technology Institute, Kinki University; 3–4–1 Kowakae, Higashi-osaka, Osaka 577–8502, Japan. Received December 25, 2009; accepted February 1, 2010; published online February 10, 2010

The 90% aqueous ethanol extract of an Egyptian natural medicine, the roots of *Bryonia cretica* **L., was found to exhibit a strong inhibitory effect on the proliferation of human leukemia U937 cells. By bioassay-guided fractionation, we isolated two new cucurbitane-type triterpene glycosides, bryoniaosides A and B, were isolated from the roots of** *Bryonia cretica* **L. together with 16 known cucurbitane-type triterpenes and glycosides. The chemical structures of bryoniaosides A and B were determined on the basis of chemical and spectroscopic evidence. Effects of principal cucurbitane-type triterpenes (cucurbitacins B, D, E, and J, 23,24-dihydrocucurbitacins B and E, and hexanorcucurbitacin D) on proliferation of the cells were examined. Cucurbitacins B and E** showed the greater cytotoxic effects with IC_{50} values of 9.2 and 16 nm after 72 h, and their IC_{50} values were **equivalent to that of camptothecin. An** α **,** β -conjugated ketone moiety at the 22—24-positions and an acetoxy **group at the 25-position are essential for the strong activity.**

Key words *Bryonia cretica*; bryoniaoside; cucurbitacin; U937 cell; structural requirement; anti-proliferative effect

Bryonia cretica L., is a Cucurbitaceae plant growing widely in the western Mediterranean coastal region and in Egypt.¹⁾ This plant has been used in folk medicine as a drastic purgative, emetic, bitter tonic and anti-diabetic agent.²⁾ Previous chemical study of *B. cretica* revealed the presence of cucurbitacins B (3) , E (5) , I, and L.³⁾ In the course of our studies on bioactive constituents from Egyptian natural medicines, $4-15$ the 90% aqueous ethanolic (90% EtOH) extract from the roots of *B. cretica* showed strong inhibition of the proliferation of human leukemia U937 cells $(IC_{50}$ value at $72 h = 0.035 \mu g/ml$).

Here we describe the chemical elucidation of two new cucurbitane-type triterpene glycosides, bryoniaosides A (**1**) and B (**2**), and anti-proliferative effects of several cucurbitanetype triterpenes (**3**—**9**) on U937 cells together with several structural requirements for the activity.

Results and Discussion

The 90% EtOH extract of the roots of *B. cretica* (11.5% from the dried roots) was partitioned into an ethyl acetate $(EtOAc)$ –H₂O $(1:1, v/v)$ mixture to furnish the EtOAc-soluble fraction and an aqueous layer. The aqueous layer was extracted with *n*-butanol (n -BuOH) to give n -BuOH and H_2O soluble fractions. As shown in Table 1, the EtOAc-soluble fraction exhibited marked activity (IC₅₀ value at $72 h =$ $0.050 \mu g/ml$, but the *n*-BuOH- and H₂O-soluble fraction lacked the activity (IC₅₀ values at 72 h > 1 μ g/ml).

The EtOAc-soluble fraction was subjected to normalphase and reversed-phase silica gel column chromatography and repeated HPLC to give two new cucurbitane-type triter-

Chart 1. Chemical Structures of Cucurbitane-Type Triterpenes (**1**—**9**) from *B. cretica*

Each value represents the mean ± S.E.M. ($n=4$). Significantly different from the control * $p<0.05$, ** $p<0.01$.

pene glycosides, bryoniaosides A (**1**, 0.0091%) and B (**2**, 0.0028%), together with 16 known cucurbitane-type triterpenes, cucurbitacins B16—18) (**3**, 0.020%), D16,17,19,20) (**4**, 0.015%), $E^{16,17}$ (**5**, 0.011%), G^{20} (0.0051%), H^{20} (0.015%), and $J^{21,22}$ (8, 0.017%), 23,24-dihydrocucurbitacins B^{16,23)} $(6, 0.0035\%)$, D^{19} (0.011%) , and $E^{16,19}$ $(7, 0.0043\%)$, 3-epicucurbitacins B^{24} (0.0024%) and D^{25} (0.0037%), hexanorcucurbitacin D^{20} (9, 0.0024%), and 2-*O*- β -D-glucopyranosylcucurbitacins $B^{18,26,27)}$ (0.030%), D^{27} (0.0057%), I^{28-30} (0.0039%) , and J^{22} (0.0035%) .

Structures of Bryoniaosides A (1) and B (2) Bryoniaoside A (**1**) was obtained as a white powder and exhibited a positive optical rotation ($[\alpha]_D^{24} + 34.4^{\circ}$ in MeOH). The IR spectrum of **1** showed absorption bands at 1693 and 1640 cm^{-1} ascribable to carbonyl and olefin functions, and broad bands at 3540 and 1028 cm^{-1} , suggestive of a glycoside structure. In the positive-ion fast atom bombardment (FAB)-MS of **1**, a quasimolecular ion peak was observed at m/z 803 (M+Na)⁺, and a high-resolution positive-ion FAB-MS analysis revealed the molecular formula of **1** to be $C_{42}H_{68}O_{13}$. The acid hydrolysis of 1 with 1.0 M hydrochloric acid (HCl) liberated L-rhamnose and D-glucose, which were identified by HPLC analysis using an optical rotation detector. The proton and carbon signals in the $\mathrm{^{1}H}\text{-}$ and $\mathrm{^{13}C}\text{-}NMR$ (Table 2, $CD₂OD$) spectra of 1, which were assigned based on various NMR experiments, 3^{11} showed signals assignable to eight methyls $[\delta \ 0.90, 1.02, 1.12, 1.25, 1.25, 1.25, 1.26]$ 1.26 (3H each, all s, H₃-18, 29, 30, 26, 27, 28, 19, 21)], a methine δ 3.41 (1H, m, H-3)] and two quaternary carbons δ_c 71.2 (C-25), 75.8 (C-20)] bearing an oxygen function, a trisubstituted olefin $[\delta 5.67$ (1H, br d, $J=ca$. 6 Hz, H-6)], and an *trans*-olefin pair $\lceil \delta \rceil 5.59$ (1H, m, H-23), 5.60 (1H, d, $J=15.9$ Hz, H-24)], together with a β -glucopyranosyl moiety and a α -rhamnopyranosyl moiety [δ 1.18 (3H, d, J=6.1 Hz, Rha-H3-6), 4.37 (1H, d, *J*-7.2 Hz, Glc-H-1), 5.52 (1H, d, *J*-1.5 Hz, Rha-H-1)]. The carbon skeleton and the positions of functional groups were revealed by the heteronuclear multiple-bond correlations (HMBC) experiment, which showed long-range correlations between the following protons and carbons (Glc-H-1 and C-3; Rha-H-1 and C-25) (Fig. 1). Next, the stereostructure of the aglycone part of **1** was characterized by nuclear Overhauser enhancement spectroscopy (NOESY) experiment, which showed NOE correlations between the following proton pairs (H-8 and H_3 -18, 19; H-10 and H_3 -28, H_3 -30; H-17 and H_3 -30). The stereostructure of the 20-position in **1** was deduced by comparison of 13C-NMR

Table 2. 13 C-NMR Data (125 MHz, CD₃OD) of Bryoniaosides A (1) and B (**2**)

Position		1	$\mathbf{2}$		
$\,1$		22.5	22.6		
\overline{c}		29.5	30.3		
$\overline{\mathbf{3}}$		86.8	87.4		
$\overline{4}$		42.7	40.7		
5		140.5	143.6		
6		120.6	120.5		
$\boldsymbol{7}$		24.8	25.2		
8		44.6	43.9		
9		50.9	48.1		
10		36.9	37.4		
11		218.1	79.3		
12		49.9	41.2		
13		51.1	49.0		
14		50.1	50.7		
15		35.0	34.8		
16		22.8	27.6		
17		51.4	52.4		
18		19.4	18.8		
19		26.4	26.4		
20		75.8	76.3		
21		25.7	26.7		
22		48.5	48.5		
23		123.5	123.8		
24		142.5	142.1		
25		71.2	71.2		
26		29.9^{a}	29.9^{a}		
27		30.1^{a}	30.1^{a}		
28		26.7	26.1		
29		28.8	28.1		
30		20.6	20.0		
$3-O-Glc$					
	$\mathbf{1}$	105.2	105.1		
	\overline{c}	77.0	77.2		
	3	77.6	77.7		
	$\overline{4}$	72.2	72.1		
	5	80.1	80.3		
	6	62.7	62.8		
25- <i>O</i> -Rha					
	$\,1\,$	100.9	101.1		
	\overline{c}	72.0	72.1		
	$\overline{3}$	72.2	72.3		
	$\overline{4}$	73.9	73.9		
	5	69.9	70.0		
	6	18.7	18.7		

a) May be interchangeable within the same column.

data around the 20-position of **1** with those of related triterpenes.^{32—35)} On the basis of this evidence, the structure of bryoniaoside A (**1**) was determined to be as shown.

Bryoniaoside B (**2**) was also obtained as a white powder with negative optical rotation ($[\alpha]_D^{24}$ -2.6° in MeOH). The molecular formula, $C_{42}H_{70}O_{13}$, of **2** was determined from positive-ion FAB-MS $[m/z\ 805\ (M+Na)^+]$ and high-resolution FAB-MS measurements. The acid hydrolysis of **2** with 1.0 ^M HCl liberated L-rhamnose and D-glucose, which were identified by HPLC analysis using an optical rotation detector. The proton and carbon signals in the $\mathrm{^{1}H}$ - and $\mathrm{^{13}C}\text{-NMR}$ spectra (Table 2, CD_3OD) of 2 were superimposable on those of **1**, except for the signals due to the 11-hydroxyl group {eight methyls $\lceil \delta \rceil$ 1.03, 1.05, 1.12, 1.18, 1.25, 1.25, 1.26, 1.26 (3H each, all s, H_3 -29, 18, 30, 28, 26, 27, 19, 21)], two

methines $[\delta 3.41$ (1H, m, H-3), 3.82 (1H, m, H-11)] and two quaternary carbons $\lbrack \delta_C$ 71.2 (C-25), 76.3 (C-20)] bearing an oxygen function, a trisubstituted olefin δ 5.56 (1H, brd, $J=ca$. 6 Hz, H-6)], and an *trans*-olefin pair [δ 5.60 (1H, d, $J=16.1$ Hz, H-24), 5.61 (1H, m, H-23)], together with a β glucopyranosyl moiety and a α -rhamnopyranosyl moiety [δ] 1.18 (3H, d, J=6.1 Hz, Rha-H₃-6), 4.36 (1H, d, J=7.5 Hz, Glc-H-1), 5.50 (1H, d, J=1.5 Hz, Rha-H-1)]}. The planar structure of 2 was confirmed by ${}^{1}H-{}^{1}H$ correlation spectroscopy (COSY) and HMBC experiments (Fig. 1). Finally, the stereostructure of **2** was characterized by NOESY experiment, which showed the NOE correlations between the fol-

Fig. 1. ¹ H–¹ H COSY and HMBC Correlations **1** and **2**

Table 3. Inhibitory Effects of Cucurbitacins B (**3**), D (**4**), E (**5**), and J (**8**), 23,24-Dihydrocucurbitacins B (**6**) and E (**7**), and Hexanorcucurbitacin D (**9**) on Proliferation of U937 Cells

	Incubation		Conc. (nM)					IC_{50}
	time	$\mathbf{0}$	1	3	10	30	100	(nM)
Cucurbitacin B (3)	24h	0.0 ± 1.9	9.3 ± 2.4	-16.5 ± 2.5	$9.0 \pm 2.2*$	56.0 ± 0.5 **	$73.8 \pm 0.4**$	25
	48h	0.0 ± 3.4	-8.4 ± 1.1	-2.6 ± 2.4	31.1 ± 2.0 **	$70.5 \pm 1.1**$	$86.4 \pm 0.5**$	15
	72h	0.0 ± 1.0	24.4 ± 25.1	6.1 ± 1.8	$54.2 \pm 0.7**$	$80.0 \pm 0.4**$	94.1 ± 0.2 **	9.2
Cucurbitacin E (5)	24h	0.0 ± 8.7	-3.1 ± 3.8	-4.2 ± 3.1	-3.8 ± 2.9	$50.2 \pm 1.0**$	$68.4 \pm 0.1**$	29
	48h	0.0 ± 1.0	2.6 ± 0.9	-0.4 ± 1.0	19.3 ± 2.8 **	$70.5 \pm 1.3**$	$89.8 \pm 1.1**$	22
	72h	0.0 ± 0.7	15.6 ± 14.1	20.7 ± 17.5	27.8 ± 1.0	84.0 ± 5.9 **	97.7 ± 2.9 **	16
Camptothecin	24h	0.0 ± 3.3	-12.6 ± 2.6	-0.6 ± 4.7	6.5 ± 3.2	$14.6 \pm 4.2*$	44.0 ± 2.9 **	160^{a}
	48h	0.0 ± 2.6	-3.0 ± 3.3	3.3 ± 3.3	$55.7 \pm 2.8**$	91.1 ± 0.3 **	94.2 ± 0.2 **	9.1
	72h	0.0 ± 2.4	1.4 ± 1.3	0.8 ± 2.0	65.7 ± 1.6 **	96.7 ± 0.1 **	97.3 ± 0.1 **	8.6
Conc. (μ_M) Incubation								IC_{50}
	time	$\mathbf{0}$	0.01	0.03	0.1	0.3	1	(μM)
Cucurbitacin D (4)	24h	0.0 ± 1.7	-5.0 ± 0.5	-2.5 ± 2.7	-6.8 ± 4.3	$12.1 \pm 4.4*$	54.2 ± 0.6 **	0.89
	48h	0.0 ± 4.9	-4.5 ± 5.3	-4.6 ± 6.7	-12.6 ± 10.3	29.4 ± 8.0 **	$72.3 \pm 4.1**$	0.53
	72h	0.0 ± 3.0	4.2 ± 1.9	5.0 ± 1.0	6.2 ± 0.1	48.1 ± 3.6 **	88.7 ± 0.5 **	0.33
23,24-Dihydrocucurbitacin B (6)	24h	0.0 ± 7.1				-4.0 ± 10.5	$51.3 \pm 1.7**$	ca. 1.0
	48h	0.0 ± 3.6	-3.1 ± 2.1	-12.1 ± 0.6	-2.8 ± 2.5	34.3 ± 6.2 **	77.5 ± 0.9 **	0.42
	72h	0.0 ± 3.7	$8.8 + 3.1$	12.5 ± 2.2 **	$23.9 \pm 1.7**$	62.1 ± 1.8 **	84.8 ± 0.5 **	0.22
	Incubation		Conc. (μ_M)					IC_{50}
	time	$\mathbf{0}$	$\mathbf{1}$	3	10	30	100	(μ_M)
23,24-Dihydrocucurbitacin E (7)	24h	0.0 ± 3.7	-7.5 ± 1.9	$11.8 \pm 4.1*$	62.8 ± 1.0 **	83.7 ± 0.9 **	92.2 ± 0.7 **	5.8
	48h	0.0 ± 1.5	-6.5 ± 1.6	$26.0 \pm 3.7**$	83.6 ± 0.6 **	96.5 ± 0.7 **	97.3 ± 0.1 **	4.5
	72h	0.0 ± 0.7	-3.3 ± 1.8	44.0 ± 1.6 **	88.4 ± 0.3 **	97.3 ± 0.3 **	99.1 ± 0.1 **	3.3
Cucurbitacin $J(8)$	24h	0.0 ± 3.7	-18.8 ± 3.3	8.7 ± 2.9	$70.9 \pm 1.0**$	$73.9 \pm 1.2**$	91.7 ± 0.8 **	7.9
	48h	0.0 ± 2.7	-2.9 ± 4.0	$49.1 \pm 3.9**$	86.0 ± 1.2 **	90.6 ± 1.1	95.6 ± 0.9 **	4.4
	72h	0.0 ± 3.7	$10.0 \pm 1.3*$	62.3 ± 3.5 **	$92.4 \pm 0.1**$	$95.5 \pm 0.1**$	99.4 ± 0.1 **	2.4
Hexanorcucurbitacin D(9)	24h	0.0 ± 6.0		7.5 ± 4.8	$55.4 \pm 2.3**$	$68.7 \pm 4.0**$	86.9 ± 1.5 **	9.4
	48h	0.0 ± 2.8	-3.1 ± 2.6	45.2 ± 2.3 **	87.8 ± 0.5 **	$88.4 \pm 0.9**$	$97.6 \pm 0.4**$	4.6
	72h	0.0 ± 1.9	$12.0 \pm 4.9*$	$60.8 \pm 3.7**$	91.9 ± 0.3 **	94.6 ± 0.5 **	98.9 ± 0.1 **	2.4

Each value represents the mean ± S.E.M. (*n*=4). Significantly different from the control * $p<0.05$, ** $p<0.01$. *a*) Inhibition (%) at 300 nM was 57.7 ± 1.1 ($p<0.01$).

lowing proton pairs (H-8 and H_2 -18, 19; H-10 and H-11, H_2 -28, H_3 -30; H-11 and H_3 -30; H-17 and H_3 -30). Consequently, the structure of bryoniaoside B (**2**) was characterized to be as shown.

Effects of Several Cucurbitane-Type Triterpenes on Proliferation of U937 Cells Among the constituents isolated, effects of several principal cucurbitane-type triterpenes (**3**—**9**) on the proliferation of U937 cells were examined. As shown in Table 3, all compounds tested showed concentration-dependent and time-dependent inhibition of the cell proliferation. The compounds **3** and **5** had the greater effects with IC₅₀ values at 72 h of 9.2 and 16 nm, respectively, while the 23,24-dihydro derivatives (**6**, **7**) and the 25-deacetyl derivative (4) were markedly less active with IC_{50} values at 72 h of 0.22, 3.3, and 0.33 μ M, respectively (Table 3).

Previously, cucurbitacins B (**3**), E (**5**), and I and related compounds were reported to show cytotoxic effects in several cell lines including A549, MDA-MB-468, HepG2, and KB, but not in U937 cells, and their apoptosis-inducing activity mediated by the inhibition of Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling at a high concentration $(1-10 \mu M)^{36-41}$ Bartalis and Halaweish reported that the glycosides of cucurbitacins E (**5**) and I were less toxic than the aglycones.³⁶⁾ In addition, Chen *et al.* recently reported the importance of an α , β -unsaturated ketone in the side chains and the 25-acetoxy group in a preliminary analysis of structure–activity relationships.³⁸⁾ Consistent with the results of these studies, $36,38)$ cucurbitacin E 2-*O*-b-D-glucopyranoside from the fruit of *Citrullus colocynthis*¹⁵⁾ was not effective less than 30μ M (inhibition: $-7.7\pm1.3\%$ at 30 μ m after 72 h). Our results also demonstrate that an α , β -conjugated ketone moiety at the 22—24 positions and an acetoxy group at the 25 position are essential for the greater activity $[3 (9.2 \text{ nm}) > 6 (0.22 \text{ µM})$; 5 (16 nm) > 7 (3.3 μ M); **3** (9.2 nM) > 4 (0.33 μ M)]. In addition, the structure of the A ring is also important $[3 (9.2 \text{ nm}) > 5$ (16 nm) ; **6** $(0.22 \mu \text{M}) > 7 (3.3 \mu \text{M})$].

In the present study, cucurbitacins B (**3**) and E (**5**) from *B. cretica* showed strong cytotoxic effects in U937 cells at low concentrations (IC₅₀=9.2 and 16 nm), and their IC₅₀ values were equivalent to that of camptothecin. The mechanism of action of cucurbitane-type triterpenes, including JAK/STAT3 signaling, should be examined further using U937 cells.

Experimental

The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter (*l*-5 cm); IR spectra, Shimadzu FTIR-8100 spectrometer; FAB-MS and high-resolution FAB-MS, JEOL JMS-SX 102A mass spectrometer; ¹H-NMR spectra, JNM-LA500 (500 MHz); 13C-NMR spectra, JNM-LA500 (125 MHz) spectrometer with tetramethylsilane as an internal standard; HPLC detector, Shimadzu RID-6A refractive index detector; HPLC column, YMC-Pack ODS-A (250×4.6 mm i.d.) and $(250\times20 \text{ mm})$ i.d.) columns were used for analytical and preparative purposes, respectively.

The following materials were used for chromatography: ordinary-phase column chromatography; Silica gel BW-200 (Fuji Silysia Chemical, Ltd., 150—350 mesh), reversed-phase column chromatography; Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100—200 mesh); TLC, precoated TLC plates with Silica gel $60F_{254}$ (Merck, normal-phase) and Silica gel RP-18 F_{254S} (Merck, reversed-phase); HPTLC, pre-coated TLC plates with Silica gel $60F_{254}$ (Merck, normal-phase), and Silica gel RP-18 WF_{254S} (Merck, reversed-phase). Detection was achieved by spraying with 1% $Ce(SO₄)₂$ –10% aqueous H₂SO₄ followed by heating.

Plant Material The roots of *Bryonia cretica* were identified by one of the authors, Professor Osama B. Abdel-Halim (College of Pharmacy, Taibah

University, Saudi Arabia). A voucher specimen (No. Y-03) of this natural medicine is on file in our laboratory.

Extraction and Isolation The dried roots of *B. cretica* (1.0 kg) was finely cut and extracted three times with 90% aqueous ethanol under reflux for 3 h. Evaporation of the solvent under reduced pressure gave the aqueous ethanolic extract (115.0 g, 11.5% from dried roots). The aqueous ethanolic extract (100.0 g) was partitioned in an EtOAc–H₂O (1 : 1, v/v) mixture. The aqueous layer was extracted with *n*-BuOH and removal of the solvent *in vacuo* from the EtOAc-, *n*-BuOH-, and H₂O-soluble portions yielded 35.0 g (4.0%), 33.0 g (3.8%), and 32.0 g (3.7%) of the residue, respectively. The EtOAc-soluble fraction (30.0 g) was subjected to ordinary-phase silica gel column chromatography [900 g, *n*-hexane–EtOAc (10 : 1—5 : 1—1 : 1— 1 : 10, v/v)–CHCl₃–MeOH–H₂O (10 : 3 : 1–7 : 3 : 1, v/v/v, lower layer)– MeOH] to afford 10 fractions [Fr. 1 (6.8 g), Fr. 2 (0.6 g), Fr. 3 (1.5 g), Fr. 4 (3.1 g), Fr. 5 (4.4 g), Fr. 6 (2.2 g), Fr. 7 (4.1 g), Fr. 8 (2.8 g), Fr. 9 (2.3 g), Fr. 10 (2.1 g)]. Fraction 2 (0.6 g) was separated by reversed-phase silica gel column chromatography [18 g, MeOH–H₂O (40:60–50:50–70:30, v/v)–MeOH] and finally HPLC [MeOH–H₂O (55:45, v/v) or CH₃CN–H₂O (40 : 60, v/v)] to give cucurbitacin E (**5**, 85 mg, 0.011%) and 23,24-dihydrocucurbitacins B (**6**, 26 mg, 0.0035%) and E (**7**, 32 mg, 0.0043%). Fraction 3 (1.5 g) was purified by HPLC [MeOH–H₂O (55:45, v/v)] to give cucurbitacin B (**3**, 150 mg, 0.020%) and 3-epi-cucurbitacin B (18 mg, 0.0024%). Fraction 4 (3.1 g) was separated by reversed-phase silica gel column chromatography $[95 g, \text{MeOH-H}_2\text{O} (40:60-50:50-70:30,$ v/v)–MeOH] and finally HPLC [MeOH–H₂O (50:50, v/v) or MeOH–H₂O (55 : 45, v/v)] to give cucurbitacin D (**4**, 110 mg, 0.015%) and 23,24 dihydrocucurbitacin D (80 mg, 0.011%). Fraction 5 (4.4 g) was separated by reversed-phase silica gel column chromatography [95 g, MeOH-H₂O $(40:60 - 50:50 - 80:20, \frac{v}{v}) - \text{MeOH}$ and finally HPLC [MeOH-H₂O] $(50:50, v/v)$ or MeOH–H₂O $(55:45, v/v)$] to give cucurbitacins H (112 mg, 0.015%) and J (**8**, 130 mg, 0.017%) and hexanorcucurbitacin D (**9**, 18 mg, 0.0024%). Fraction 6 (2.2 g) was separated by reversed-phase silica gel column chromatography $[70 \text{ g}, \text{MeOH-H}_2\text{O} (40:60-50:50-80:20,$ v/v)–MeOH] and finally HPLC [CH₃CN–H₂O $(30:70, v/v)$] to give 3epi-cucurbitacin D (28 mg, 0.0037%). Fraction 7 (4.1 g) was separated by reversed-phase silica gel column chromatography [85 g, MeOH-H₂O] $(40:60 - 50:50 - 80:20, v/v)$ -MeOH] and finally HPLC [CH₃CN-H₂O $(30:70, \text{v/v})$ to give cucurbitacin G $(38 \text{ mg}, 0.0051\%)$ and $2-O-\beta$ -Dglucopyranosylcucurbitacin B (220 mg, 0.030%). Fraction 8 (2.8 g) was separated by reversed-phase silica gel column chromatography [70 g, MeOH-H₂O (30:70-50:50-80:20, v/v)-MeOH] and finally HPLC $[CH_2CN-H_2O (30:70 \text{ or } 40:60, v/v)]$ to give 2-*O-B-*D-glucopyranosylcucurbitacins D (43 mg, 0.0057%) and I (29 mg, 0.0039%). Fraction 9 (2.3 g) was separated by reversed-phase silica gel column chromatography [70 g, MeOH-H₂O (30:70-50:50-70:30, v/v)-MeOH] and finally HPLC $[CH_3CN-H_2O (30:70, v/v)]$ to give 2-*O-* β *-*D-glucopyranosylcucurbitacin J (26 mg, 0.0035%). Fraction 10 (2.1 g) was separated by reversed-phase silica gel column chromatography [70 g, MeOH-H₂O (30:70-50:50-80:20, v/v)–MeOH] and finally HPLC [MeOH–H₂O (55:45 or 65:35, v/v)] to give bryoniaosides A (**1**, 68 mg, 0.0091%) and B (**2**, 21 mg, 0.0028%).

Bryoniaoside A (1): A white powder, $[\alpha]_D^{24} +34.4^{\circ}$ (*c*=2.50, MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{42}H_{68}O_{13}Na$ (M+Na)⁺: 803.4558. Found: 803.4554. IR (KBr): 3540, 1693, 1640, 1028 cm⁻¹. ¹H-NMR (500 MHz, CD₃OD) δ: 0.90, 1.02, 1.12, 1.25, 1.25, 1.25, 1.26, 1.26 (3H each, all s, H₃-18, 29, 30, 26, 27, 28, 19, 21), 1.18 (3H, d, J=6.1 Hz, Rha-H3-6), 1.92 (1H, br d, *J*-*ca.* 8 Hz, H-8), 3.41 (1H, m, H-3), [3.62 (1H, dd, *J*-5.2, 11.7 Hz), 3.80 (1H, dd, *J*-2.1, 11.7 Hz), Glc-H2-6], 4.37 (1H, d, *J*-7.2 Hz, Glc-H-1), 5.52 (1H, d, *J*-1.5 Hz, Rha-H-1), 5.59 (1H, m, H-23), 5.60 (1H, d, *J*-15.9 Hz, H-24), 5.67 (1H, br d, *J*-*ca.* 6 Hz, H-6). 13C-NMR (125 MHz, CD₃OD) δ_c : given in Table 1. Positive-ion FAB-MS *m/z*: 803 $(M+Na)^+$.

Bryoniaoside B (2): A white powder, $[\alpha]_D^{24}$ -2.6° (c =1.00, MeOH). High-resolution positive-ion FAB-MS: Calcd for $C_{42}H_{70}O_{13}Na$ (M+Na)⁺: 805.4714. Found: 805.4706. IR (KBr): 3540, 1465, 1220, 1028 cm⁻¹. ¹H-NMR (500 MHz, CD₃OD) δ: 1.03, 1.05, 1.12, 1.18, 1.25, 1.25, 1.26, 1.26 (3H each, all s, H₃-29, 18, 30, 28, 26, 27, 19, 21), 1.18 (3H, d, J=6.1 Hz, Rha-H3-6), 1.66 (1H, br d, *J*-*ca.* 8 Hz, H-8), 3.41 (1H, m, H-3), [3.63 (1H, dd, $J=5.5$, 12.0 Hz), 3.80 (1H, dd, $J=2.0$, 12.0 Hz), Glc-H₂-6], 3.82 (1H, m, H-11), 4.36 (1H, d, *J*-7.5 Hz, Glc-H-1), 5.50 (1H, d, *J*-1.5 Hz, Rha-H-1), 5.56 (1H, br d, *J*-*ca.* 6 Hz, H-6), 5.60 (1H, d, *J*-16.1 Hz, H-24), 5.61 (1H, m, H-23). ¹³C-NMR (125 MHz, CD₃OD) δ_c : given in Table 1. Positive-ion FAB-MS m/z : 805 (M+Na)⁺.

Acid Hydrolysis of 1 and 2 A solution of **1** or **2** (each 2 mg) in 1 ^M HCl (1 ml) was heated under reflux for 3 h. After cooling, the reaction mixture was neutralized with Amberlite IRA-400 (OH^- form) and the resin was filtered. On removal of the solvent from the filtrate under reduced pressure, the residue was partitioned in an EtOAc–H₂O $(1:1, v/v)$ mixture giving an EtOAc-soluble fraction and an aqueous phase. The solvent was removed *in vacuo* from the aqueous phase, which was subjected to HPLC analysis under the following conditions: HPLC column, Kaseisorb LC NH₂-60-5, 4.6 mm i.d.250 mm (Tokyo Kasei Co., Ltd., Tokyo, Japan); detection, optical rotation [Shodex OR-2 (Showa Denko Co., Ltd., Tokyo, Japan); mobile phase, CH₃CN–H₂O (85 : 15, v/v); flow rate, 0.8 ml/min]. The identification of Lrhamnose (**i**) and D-glucose (**ii**) from **1** and **2** present in the aqueous layer was carried out by comparing their retention time and optical rotation with those of authentic samples $[t_R: (i)$ 7.8 min (negative optical rotation) and (*ii*) 13.9 min (positive optical rotation)], respectively.

Cell Culture Human leukemia U937 cells (Cell No. JCRB9021) were obtained from Health Science Research Resources Bank (Osaka, Japan). They were maintained in RPMI1640 medium supplemented with 10% fetal bovine serum (FBS), 100 units/ml penicillin, and $100 \mu g/ml$ streptomycin.

Cytotoxicity Cytotoxicity was assayed as described previously.42) Briefly, after a 20, 44, or 68-h incubation of U937 cells $(5\times10^{3} \text{ cells})$ 100μ l/well) with test compounds in RPMI1640 medium supplemented with 10% FBS in 96-well microplates, $10 \mu l$ of WST-8 solution (Cell Counting Kit-8TM) was added to each well. After a further 4 h in culture, the optical density of the water-soluble formazan produced by the cells was measured with a microplate reader (Model 550, Bio-Rad) at 450 nm (reference: 655 nm). Camptothecin was used as a reference compound. Inhibition (%) was calculated with the following formula and the IC_{50} value was determined graphically.

inhibition $(\%)=(A-B)/A \times 100$

A and *B* indicate the optical density of vehicle and test compound-treated groups $(n=4)$.

Statistical Analysis For the statistical analysis, a one-way analysis of variance followed by Dunnett's test was used (Tables 1, 3). Probability (*p*) values less than 0.05 were considered significant.

Acknowledgements M. Yoshikawa and H. Matsuda were supported by the 21st COE Program, Academic Frontier Project, and a Grant-in Aid for Scientific Research from MEXT (the Ministry of Education, Culture, Sports, Science and Technology of Japan). T. Morikawa was supported by High-tech Research Center Project (2007—2011) and a Grant-in Aid for Scientific Research from MEXT. H. Matsuda was also supported by the Hoh-ansha Foundation, Japan.

References and Notes

- 1) Tackholm V., "Student Flora of Egypt," 2nd ed., Cairo University, Cairo, 1974, p. 399.
- 2) Uphof J. C., "Dictionary of Economic Plants," ed. by Engelmann H. R., Hafner Publishing Co., New York, 1959, p. 61.
- 3) Halim A. F., Mansour E. S., El-Fattah H. A., *Mansoura J. Pharm. Sci.*, **6**, 22—36 (1989).
- 4) Murakami T., Kishi A., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull.*, **48**, 994—1000 (2000).
- 5) Yoshikawa M., Murakami T., Kishi A., Kageura T., Matsuda H., *Chem. Pharm. Bull.*, **49**, 863—870 (2001).
- 6) Murakami T., Kishi A., Yoshikawa M., *Chem. Pharm. Bull.*, **49**, 974— 978 (2001).
- 7) Morikawa T., Xu F., Matsuda H., Yoshikawa M., *Heterocycles*, **57**, 1983—1988 (2002).
- 8) Yoshikawa M., Xu F., Morikawa T., Ninomiya K., Matsuda H., *Bioorg. Med. Chem. Lett.*, **13**, 1045—1049 (2003).
- 9) Yoshikawa M., Morikawa T., Xu F., Ando S., Matsuda H., *Heterocycles*, **60**, 1787—1792 (2003).
- 10) Xu F., Morikawa T., Matsuda H., Ninomiya K., Yoshikawa M., *J. Nat. Prod.*, **67**, 569—576 (2004).
- 11) Abdel-Halim O. B., Morikawa T., Ando S., Matsuda H., Yoshikawa M., *J. Nat. Prod.*, **67**, 1119—1124 (2004).
- 12) Morikawa T., Xu F., Kashima Y., Matsuda H., Ninomiya K., Yoshikawa M., *Org. Lett.*, **6**, 869—872 (2004).
- 13) Morikawa T., Xu F., Ninomiya K., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull.*, **52**, 494—497 (2004).
- 14) Morikawa T., Abdel-Halim O. B., Matsuda, H., Ando, S., Muraoka O., Yoshikawa, M. *Tetrahedron*, **62**, 6435—6442 (2006).
- 15) Yoshikawa M., Morikawa T., Kobayashi H., Matsuhira K., Nakamura S., Matsuda H., *Chem. Pharm. Bull.*, **55**, 428—434 (2007).
- 16) Yamada Y., Hagiwara K., Iguchi K., Takahashi Y., *Chem. Lett.*, **1978**, 319—322 (1978).
- 17) Che C.-T., Fang X., Phoebe C. H. Jr., Kinghorn A. D., Farnsworth N. R., *J. Nat. Prod.*, **48**, 429—434 (1985).
- 18) Ahmad M. U., Huo M. E., Sutradhar R. K., *Phytochemistry*, **36**, 421— 423 (1994).
- 19) Velde V. V., Lavie D., *Tetrahedron*, **39**, 317—321 (1983).
- 20) Fujita S., Kasai R., Ohtani K., Yamasaki K., Chiu M.-H., Nie R.-L., Tanaka O., *Phytochemistry*, **38**, 465—472 (1995).
- 21) Gamlath C. B., Gunatilaka A. A. L., Alvi K. A., Atta-ur-Rahman, Balasubramaniam S., *Phytochemistry*, **27**, 3225—3229 (1988).
- 22) Kanchanapoom T., Kasai R., Yamasaki K., *Phytochemistry*, **59**, 215— 228 (2002).
- 23) Bauer R., Berganza L. H., Seligmann O., Wagner H., *Phytochemistry*, **24**, 1587—1591 (1985).
- 24) Kitajima J., Mukai A., Masuda Y., Tanaka Y., *Yakugaku Zasshi*, **109**, 265—270 (1989).
- 25) Sarker S. D., Whiting P., Sik V., Dinan L., *Phytochemistry*, **50**, 1123— 1128 (1999).
- 26) Laurie W. A., McHale D., Sheridan J. B., *Phytochemistry*, **24**, 2659— 2661 (1985).
- 27) Yamada Y., Hagiwara K., Iguchi K., Suzuki S., Hsu H.-Y., *Chem. Pharm. Bull.*, **26**, 3107—3112 (1978).
- 28) Hatam N. A. R., Whiting D. A., Yousif N. J., *Phytochemistry*, **28**, 1268—1271 (1989).
- 29) Sachdev-Gupta K., Radke C. D., Renwick J. A. A., *Phytochemistry*, **33**, 1385—1388 (1993).
- 30) Mai L. P., Guénard D., Franck M., Tri M. V., Gaspard C., Sévenet T., *Nat. Prod. Lett.*, **16**, 15—19 (2002).
- 31) The ¹ H- and 13C-NMR spectra of **1** and **2** were assigned with the aid of distortionless enhancement by polarization transfer (DEPT), homocorrelation spectroscopy $(^1H-^1H$ COSY), heteronuclear multiple-quantum coherence (HMQC), and HMBC experiments.
- 32) Teng R., Li H., Chen J., Wang D., He Y., Yang C., *Magn. Reson. Chem.*, **40**, 483—488 (2002).
- 33) Chen J.-T., Li H.-Z., Wang D., Zhang Y.-J., Yang C.-R., *Helv. Chim. Acta*, **89**, 1142—1148 (2006).
- 34) Yoshikawa M., Sugimoto S., Nakamura S., Matsuda H., *Chem. Pharm. Bull.*, **55**, 571—576 (2007).
- 35) Nakamura S., Sugimoto S., Matsuda H., Yoshikawa M., *Chem. Pharm. Bull.*, **55**, 1342—1348 (2007).
- 36) Bartalis J., Halaweish F. T., *J. Chromatogr. B*, **818**, 159—166 (2005).
- 37) Meng D., Qiang S., Lou L., Zhao W., *Planta Med.*, **74**, 1741—1744 (2008).
- 38) Chen C., Qiang S., Luo L., Zhao W., *J. Nat. Prod.*, **72**, 824—829 (2009).
- 39) Blaskovich M. A., Sun J., Cantor, A., Turkson J., Jove R., Sebti S. M., *Cancer Res.*, **63**, 1270—1279 (2003).
- 40) Sun J., Blaskovich M. A., Jove R., Livingston S. K., Coppola D., Sebti S. M., *Oncogene*, **24**, 3236—3245 (2005).
- 41) Shi X., Franko B., Franz C., Amin H. M., Lai R., *Br. J. Haematol.*, **135**, 26—32 (2006).
- 42) Matsuda H., Yoshida K., Miyagawa K., Asao Y., Takayama S., Nakashima S., Xu F., Yoshikawa M., *Bioorg. Med. Chem.*, **15**, 1539— 1546 (2007).