The Remarkable Solvent Effect on Zn(OAc)₂-Catalyzed Hydrosilylation of Ketones

Hiroki Ozasa, Kazuhiro Kondo,* and Toyohiko Aoyama*

Graduate School of Pharmaceutical Sciences, Nagoya City University; 3–1 Tanabe-dori, Mizuho-ku, Nagoya 467–8603, Japan. Received March 8, 2010; accepted April 6, 2010; published online April 14, 2010

The combination of $Zn(OAc)_2$ and N,N-dimethylformamide was found to effectively hydrosilylate various ketones at room temperature. Furthermore, our protocol allows the chemoselective reduction of a formyl group in the presence of a ketone group.

Key words hydrosilylation; zinc; silane; chemoselective reduction

Reduction of C=O bonds to alcohols, is an important reaction in organic synthesis.¹⁾ Among the available reduction methods, hydrosilylation is very useful because of its less severe reaction, as compared with other reduction methods such as the one that uses LiAlH₄. As part of a program for development of synthetic reactions using catalysts, composed of elements with a high Clarke number,²⁻⁴⁾ we planned to investigate the catalytic hydrosilylation of ketones using $Zn(OAc)_2$.

During this search, the research group led by Nishiyama had independently reported the hydrosilylation of ketones in tetrahydrofuran (THF) at 65 °C using $Zn(OAc)_2$ and $(EtO)_2MeSiH.^{5)}$ Therefore, we decided to further develop effective hydrosilylation. We intensively examined the hydrosilylation of 2-acetonaphtone (**1a**) with PhSiH₃ in various solvents (Table 1): the use of Ph₃SiH, Ph₂SiH₂, (EtO)₃SiH, and Et₃SiH as silane reagents gave less satisfactory results. Remarkably, only *N*,*N*-dimethylformamide (DMF) allowed effective hydrosilylation at room temperature.

Under the optimized conditions, the reaction proved to be a general reaction and could be applied to a broad range of ketones (Table 2). Specifically, the reaction proceeded smoothly under mild conditions with a synthetically acceptable catalyst loading (5 mol%). Various benzylic ketones **1b**—**i**, aliphatic ketones **1j**—**l** and α,β -unsaturated ketones **1m** were employable, affording the corresponding reduction products in good yields. Fortunately, our method was found to allow the chemoselective reduction of an aldehyde in the presence of a ketone group or a ketone in the presence of cyano and ester groups as shown in Fig. 1.

In summary, the combination of $Zn(OAc)_2$ and DMF was

Zn(OAc)₂ (5 mol %)

ŌН

Table 1. Solvent Effect in Zn(OAc)₂-Catalyzed Hydrosilylation

Ö

PhSiH ₃ (2.0 mol equiv) solvent, time, rt					
Entry	Solvent	Time (h)	Yield (%)		
1	DMF	2	quant		
2	MeCN	4	trace ^{a)}		
3	MeOH	4	trace ^{a)}		
4	EtOAc	4	trace ^{a)}		
5	THF	4	trace ^{a)}		
6	dioxane	4	trace ^{a)}		
7	toluene	4	trace ^{a)}		

a) TLC revealed the major component to be the starting ketone.

* To whom correspondence should be addressed. e-mail: kazu@gakushikai.jp

Table 2.Substrate Generality

Ketone	$\xrightarrow{\text{Zn(OAc)}_2(5 \text{ mol}\%)} \text{Alcohol}$		
	PhSiH ₃ (2.0 mol eq.)		
	DMF, time, rt		

Entry	Substrate	Time (h)	Yield (%)
1	MeO 1b	24	quant
2	Br 1c	24	quant
3	↓ 0 ↓ 1d	9	95
4	0 1e	6	81
5		6	91
6		24	96
7	0 Ih	5	quant
8		3	97
9	Ph O Ph 1j	4	quant
10	MeO 1k	24	87
11	Ph- 1I	2	quant ^{a)}
12	Ph Im	6	quant ^{b)}

a) Only anti-product was obtained. b) Reduced in only the 1,2-mode.

© 2010 Pharmaceutical Society of Japan

Fig. 1. Chemoselective Hydrosilylation

found to effectively hydrosilylate various ketones at room temperature. Recently, chemoselective hydrosilylation of an amide in the presence of a ketone group with $Zn(OAc)_2$ and $(EtO)_3SiH$ in THF, was reported by Beller's group.⁶⁾ Interestingly, Beller's results are different from our results, which hydrosilylate ketones in amide solvent, DMF.

Experimental

General IR spectra were measured on a SHIMADZU FTIR-8100 diffraction grating IR spectrophotometer. ¹H- and ¹³C-NMR spectra were measured on a JEOL JNM-EX-270 NMR spectrometer, operating at 270 MHz for ¹H-NMR and at 68 MHz for ¹³C-NMR. ¹H- and ¹³C-NMR spectra were reported in d units, parts per million (ppm) downfield from tetramethylsilane (δ =0). Electron ionization (EI)- and FAB-MS spectra were measured on a JEOL JMS-SX-102A instrument.

Representative Procedure for the Hydrosilylation of 1-(Naphthalen-2-yl)ethanone (1a) (entry 1, Table 1) To a stirred solution of $Zn(OAc)_2$ (4.7 mg, 0.0250 mmol) in DMF (1.00 ml) were added 2-acetonaphthone (86.0 mg, 0.500 mmol) and PhSiH₃ (127 μ l, 1.00 mmol). The reaction mixture was stirred for 2 h at room temperature. To this mixture, 1 M NaOH was added at 0 °C and then extracted with EtOAc. Organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. Purification by silica gel column (hexane : EtOAc=4:1) afforded 1-(naphthalen-2-yl)ethanol (86.1 mg, quant) as a white solid. Physical data were comparable with those of a commercially available sample.

The physical data of the products as described below were comparable with those reported: 1-*o*-tolylethanol (entry 3),⁷⁾ 2-methyl-1-phenylpropan-1-ol⁸⁾ (entry 4), cyclohexyl(phenyl)methanol⁹⁾ (entry 5), 4,4-diphenylbutan-2-ol¹⁰⁾ (entry 9), 1-(4-methoxyphenyl)propan-2-ol¹¹⁾ (entry 10), (*E*)-4-phenylbut-3-en-2-ol⁷⁾ (entry 12), 1-(4-(hydroxymethyl)phenyl)ethanone¹²⁾ (Fig. 1), ethyl 4-(1-hydroxyethyl)benzoate (Fig. 1).¹³⁾ The physical data of the all other products were comparable with those of a commercially available sample.

References

- Andersson P. G., Munslow I. J., "Modern Reduction Methods," Wiley-VCH, New York, 2008.
- Sakurai F., Kondo K., Aoyama T., *Tetrahedron Lett.*, 50, 6001–6003 (2009), and references cited therein.
- 3) Matsuoka H., Kondo K., Tetrahedron Lett., 50, 2320-2321 (2009).
- Fukuda Y., Kondo K., Aoyama T., Synthesis, 2006, 2649–2652 (2006), and references cited therein.
- Inagaki T., Yamada Y., Phong L. T., Furuta A., Ito J., Nishiyama H., Synlett, 2009, 253—256 (2009).
- Das S., Addis D., Zhou S., Junge K., Beller M., J. Am. Chem. Soc., 132, 1770–1771 (2010).
- 7) Li W., Sun X., Zhou L., Hou G., Yu S., Zhang X., J. Org. Chem., 74, 1397–1399 (2009).
- Shaikh N. S., Enthaler S., Junge K., Beller M., Angew. Chem., Int. Ed., 47, 2497—2501 (2008).
- 9) Qin Y.-C., Pu L., Angew. Chem., Int. Ed., 45, 273-277 (2006).
- 10) Shi L., Tu Y.-Q., Wang M., Zhang F.-M., Fan C.-A., Zhao Y.-M., Xia W.-J., J. Am. Chem. Soc., 127, 10836—10837 (2005).
- Runge M. B., Mwangi M. T., Miller L. II, Perring M., Bowden N. B., Angew. Chem., Int. Ed., 47, 935–939 (2008).
- 12) Ruan J., Li X., Saidai O., Xiao, J., J. Am. Chem. Soc., 134, 2424-2425 (2008).
- 13) Mathre D. J., Thompson A. S., Douglas A. W., Hoogsteen K., Carroll J. D., Corley E. J., Grabowski E. J., *J. Am. Chem. Soc.*, **58**, 2880—2888 (1993).