The Remarkable Solvent Effect on Zn(OAc),-Catalyzed Hydrosilylation of Ketones

Hiroki OZASA, Kazuhiro KONDO,* and Toyohiko AOYAMA*

Graduate School of Pharmaceutical Sciences, Nagoya City University; 3–1 Tanabe-dori, Mizuho-ku, Nagoya 467–8603, Japan. Received March 8, 2010; accepted April 6, 2010; published online April 14, 2010

The combination of Zn(OAc), and *N*_{*N*}**-dimethylformamide was found to effectively hydrosilylate various ketones at room temperature. Furthermore, our protocol allows the chemoselective reduction of a formyl group in the presence of a ketone group.**

Key words hydrosilylation; zinc; silane; chemoselective reduction

Reduction of $C=O$ bonds to alcohols, is an important reaction in organic synthesis.¹⁾ Among the available reduction methods, hydrosilylation is very useful because of its less severe reaction, as compared with other reduction methods such as the one that uses $LiAlH₄$. As part of a program for development of synthetic reactions using catalysts, composed of elements with a high Clarke number, $2^{-(4)}$ we planned to investigate the catalytic hydrosilylation of ketones using $Zn(OAc)_{2}$.

During this search, the research group led by Nishiyama had independently reported the hydrosilylation of ketones in tetrahydrofuran (THF) at 65° C using $Zn(OAc)$, and (EtO) ₂MeSiH.⁵⁾ Therefore, we decided to further develop effective hydrosilylation. We intensively examined the hydrosilylation of 2-acetonaphtone $(1a)$ with PhSiH₃ in various solvents (Table 1): the use of Ph₃SiH, Ph₂SiH₂, (EtO)₃SiH, and $Et₃SiH$ as silane reagents gave less satisfactory results. Remarkably, only *N*,*N*-dimethylformamide (DMF) allowed effective hydrosilylation at room temperature.

Under the optimized conditions, the reaction proved to be a general reaction and could be applied to a broad range of ketones (Table 2). Specifically, the reaction proceeded smoothly under mild conditions with a synthetically acceptable catalyst loading (5 mol%). Various benzylic ketones **1b—i**, aliphatic ketones **1***j*—I and α , β -unsaturated ketones **1m** were employable, affording the corresponding reduction products in good yields. Fortunately, our method was found to allow the chemoselective reduction of an aldehyde in the presence of a ketone group or a ketone in the presence of cyano and ester groups as shown in Fig. 1.

In summary, the combination of $Zn(OAc)$, and DMF was

Table 1. Solvent Effect in Zn(OAc)₂-Catalyzed Hydrosilylation

$Zn(OAc)_2$ (5 mol %)	
PhSiH ₃ (2.0 mol equiv) solvent, time, rt	

a) TLC revealed the major component to be the starting ketone.

∗ To whom correspondence should be addressed. e-mail: kazu@gakushikai.jp © 2010 Pharmaceutical Society of Japan

Table 2. Substrate Generality

Ketone $\frac{\text{Zn}(\text{OAc})_2(5 \text{mol}\%)}{\text{PhSiH}_3(2.0 \text{ mol eq.})}$ Alcohol DMF, time, rt

Entry	Substrate	Time (h)	Yield (%)
$\mathbf{1}$	$\frac{0}{\pi}$ 1b MeO	24	quant
\overline{c}	$\frac{0}{1}$ 1c Br	24	quant
$\overline{\mathbf{3}}$	ဂူ 1d	9	95
$\overline{4}$	Ω 1e	6	81
5	$\frac{1}{2}$ 1f	6	91
$\overline{6}$	$\frac{1}{2}$ 1g	24	96
$\overline{7}$	$\frac{0}{\pi}$ $\overline{1}h$	5	quant
$\,$ $\,$	11	\mathfrak{Z}	97
$\overline{9}$	Ph O Ph ⁻ 1j	$\overline{4}$	quant
$10\,$	1k MeO	24	87
11	Ph _: EÓ. 11	\overline{c}	quant ^{a)}
12	$\frac{0}{\pi}$ Ph′ 1 _m	6	$\text{quant}^{b)}$

a) Only anti-product was obtained. *b*) Reduced in only the 1,2-mode.

Fig. 1. Chemoselective Hydrosilylation

found to effectively hydrosilylate various ketones at room temperature. Recently, chemoselective hydrosilylation of an amide in the presence of a ketone group with $Zn(OAc)$, and (EtO) ₃SiH in THF, was reported by Beller's group.⁶⁾ Interestingly, Beller's results are different from our results, which hydrosilylate ketones in amide solvent, DMF.

Experimental

General IR spectra were measured on a SHIMADZU FTIR-8100 diffraction grating IR spectrophotometer. ¹H- and ¹³C-NMR spectra were measured on a JEOL JNM-EX-270 NMR spectrometer, operating at 270 MHz for ¹H-NMR and at 68 MHz for ¹³C-NMR. ¹H- and ¹³C-NMR spectra were reported in d units, parts per million (ppm) downfield from tetramethylsilane $(\delta = 0)$. Electron ionization (EI)- and FAB-MS spectra were measured on a JEOL JMS-SX-102A instrument.

Representative Procedure for the Hydrosilylation of 1-(Naphthalen-2 yl)ethanone (1a) (entry 1, Table 1) To a stirred solution of $\text{Zn}(\text{OAc})_2$ (4.7 mg, 0.0250 mmol) in DMF (1.00 ml) were added 2-acetonaphthone (86.0 mg, 0.500 mmol) and PhSiH₃ (127 μ l, 1.00 mmol). The reaction mixture was stirred for $2 h$ at room temperature. To this mixture, $1 M N aOH$ was added at 0 °C and then extracted with EtOAc. Organic extracts were washed with brine, dried (Na_2SO_4) , and concentrated. Purification by silica gel column (hexane: EtOAc=4:1) afforded 1-(naphthalen-2-yl)ethanol (86.1 mg, quant) as a white solid. Physical data were comparable with those of a commercially available sample.

The physical data of the products as described below were comparable with those reported: 1- o -tolylethanol (entry 3),⁷⁾ 2-methyl-1-phenylpropan-1-ol⁸⁾ (entry 4), cyclohexyl(phenyl)methanol⁹⁾ (entry 5), 4,4-diphenylbutan-2-ol¹⁰⁾ (entry 9), 1-(4-methoxyphenyl)propan-2-ol¹¹⁾ (entry 10), (*E*)-4phenylbut-3-en-2-ol⁷⁾ (entry 12), 1-(4-(hydroxymethyl)phenyl)ethanone¹²⁾ (Fig. 1), ethyl 4-(1-hydroxyethyl)benzoate (Fig. 1).13) The physical data of the all other products were comparable with those of a commercially available sample.

References

- 1) Andersson P. G., Munslow I. J., "Modern Reduction Methods," Wiley-VCH, New York, 2008.
- 2) Sakurai F., Kondo K., Aoyama T., *Tetrahedron Lett.*, **50**, 6001—6003 (2009), and references cited therein.
- 3) Matsuoka H., Kondo K., *Tetrahedron Lett.*, **50**, 2320—2321 (2009).
- 4) Fukuda Y., Kondo K., Aoyama T., *Synthesis*, **2006**, 2649—2652 (2006), and references cited therein.
- 5) Inagaki T., Yamada Y., Phong L. T., Furuta A., Ito J., Nishiyama H., *Synlett*, **2009**, 253—256 (2009).
- 6) Das S., Addis D., Zhou S., Junge K., Beller M., *J. Am. Chem. Soc.*, **132**, 1770—1771 (2010).
- 7) Li W., Sun X., Zhou L., Hou G., Yu S., Zhang X., *J. Org. Chem.*, **74**, 1397—1399 (2009).
- 8) Shaikh N. S., Enthaler S., Junge K., Beller M., *Angew. Chem., Int. Ed.*, **47**, 2497—2501 (2008).
- 9) Qin Y.-C., Pu L., *Angew. Chem., Int. Ed.*, **45**, 273—277 (2006).
- 10) Shi L., Tu Y.-Q., Wang M., Zhang F.-M., Fan C.-A., Zhao Y.-M., Xia W.-J., *J. Am. Chem. Soc.*, **127**, 10836—10837 (2005).
- 11) Runge M. B., Mwangi M. T., Miller L. II, Perring M., Bowden N. B., *Angew. Chem., Int. Ed.*, **47**, 935—939 (2008).
- 12) Ruan J., Li X., Saidai O., Xiao, J., *J. Am. Chem. Soc.*, **134**, 2424— 2425 (2008).
- 13) Mathre D. J., Thompson A. S., Douglas A. W., Hoogsteen K., Carroll J. D., Corley E. J., Grabowski E. J., *J. Am. Chem. Soc.*, **58**, 2880—2888 (1993).