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Nowadays, the spectrophotometric techniques remain
largely used in the field of pharmaceutical analysis because
of the easy interpretation and handling of the spectral data.
Furthermore, UV analysis is inexpensive, simply to use and
allows to obtain rapidly high accuracy and reproducibility
from a small number of samples. The difficulty in the analy-
sis of pharmaceutical preparations using spectroscopic meth-
ods depends on the complexity of the mixture and increases
with the number of components, particularly when spectral
features of these substances are similar or largely overlapped.
In some cases, excipients in commercial formulations may
give spectral bands overlapping those from drugs. Another
problem in a spectral procedure can be the presence of non-
linearity, or small deviations from linearity, due to interaction
between drugs or excipients.

Multivariate calibration methods, e.g. CLS (Classical
Least Squares), ILS (Iterative Least Squares), PCR (Principal
Component Regression) and PLS (Partial Least Squares),
have represented in the last years a valid answer to the multi-
component determination of several drugs in the absence of
interferences from excipients. Nevertheless, these classical
chemometric methods show some difficulties in the resolu-
tion of complex samples, especially when the number of
components increases, owing to the above mentioned prob-
lems.

Several analytical applications indicate that the combina-
tion of mathematical techniques provides more accurate re-
sults than those obtained by the application of single classi-
cal methods.1,2) In recent years, the hyphenated methods
based on principal component analysis and artificial neural
network (PCA-ANN) regression have been proposed as cali-
bration tools for the analysis of mixtures when spectral data
were complex or when noise interference, nonlinear and in-
teraction interferences were present.3—6) Although the ANN
methods have found greater application in nonlinear calibra-

tion systems, they have the ability to model also linear rela-
tionships.7—9) A neural network is composed of an input layer
and an output layer with one or several hidden layers of neu-
rons. In the ANN model, neurons are used to calculate coeffi-
cients or relationships between input and output layers by
means of transfer functions. In a network, input and output
correspond to the entry data and quantitative outcome, re-
spectively.10—12) The combined use of PCA and ANN usually
improves the training speed, enhances the robustness of the
model and reduces the calibration errors. Since the ratio be-
tween samples and variables in the ANN should be kept as
high as possible, PCA is widely used in chemometrics to re-
duce the number of variables in a data matrix. Several ANN
applications in quantitative analysis use PC scores obtained
from PCA, as input variables.13,14)

In this work, a new hyphenated chemometric approach
based on PCA and ANN was developed for the simultaneous
determination of caffeine (CAF), mepyramine (MEP),
phenylpropanolamine (PPA) and pheniramine (PNA) in phar-
maceutical formulations without any separation step. The
drugs are combined all together only in one pharmaceutical
specialty but they are also present in many analgesic and an-
tipyretic formulations in different combination as ternary, bi-
nary or single-component mixtures.

CAF is a psychoactive stimulant drug having the effect of
temporarily warding off drowsiness and restoring alertness. It
has diuretic properties too, at least when administered in suf-
ficient doses to subjects who do not have a tolerance for it.15)

MEP is a first generation antihistamine, targeting the H1 re-
ceptor. However, it rapidly permeates the brain often causing
drowsiness. It is used in combination products to treat the
common cold and menstrual symptoms.16) PPA, also known
as norephedrine or oxyamphetamine, is a psychoactive drug
of the phenethylamine and amphetamine chemical classes
which is used as a stimulant, decongestant and anorectic
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agent.17,18) It is commonly used in prescription and over-the-
counter cough and cold preparations. PNA is an antihista-
mine used to treat allergic conditions such as hay fever or 
urticaria. It has relatively strong sedative effects, and may
sometimes be used off-label as an over-the-counter sleeping
pill. Usually, it’s used in combination with other drugs.19) The
above drugs have been analyzed in previous studies by using
different spectrophotometric20—22) and chromatographic
methods.23—27) CAF and MEP have been also quantified in
pharmaceuticals by multivariate procedures.28—30)

UV analysis of the quaternary mixture showed an exten-
sive overlap of the drug spectra. The spectral interference re-
sulted very critical for PPA and PNA, because of their low
absorptivity and, at the same time, the relatively higher ab-
sorptivity of the other two components. For this reason PPA
and PNA could more suffer by interference from excipients
or instrumental noise. ANN approach appeared so useful to
minimize noisy and nonlinear interferences in such a way to
obtain a more robust model.

Performance of ANN-PCA was compared with a simple
ANN calibration, to investigate the ability of the PCA in ex-
tracting the most useful information from the raw data set
and with a classical linear calibration technique such as
PLS2. PLS2 was preferred to PLS1 because the data process-
ing is made contemporarily for all the components and only
one ANN-PCA model is used to predict all four drugs at
once. It results extremely effective when applied to systems
with component presenting not very different concentrations.
On the contrary, PLS1 processing is made for one constituent
at a time and is preferable when the concentrations of the
components present a high difference.

Validation of all the calibration models was performed by
analysis of synthetic mixtures of the target compounds added
with tablets excipients, to verify their prediction ability in
terms of accuracy and precision. The models were finally ap-
plied to the simultaneous quantitative prediction of the four
studied compounds in commercial tablets.

Chemometric Techniques. Principal Component
Analysis (PCA) Principal component analysis (PCA), also
named eigenvector-based multivariate analysis, is widely
used in statistics to reduce the number of the variables of a
data matrix. Usually, one of the main problems in modern
data analysis is precisely the reduction of dimensionality. In
fact the multidimensional data sets are difficult to interpret,
and their structure cannot be directly visualized.

PCA transforms a number of correlated variables into a
smaller number of uncorrelated variables called principal
components (PCs), or factors, which can explain sufficiently
the data structure. The main idea of PCA is to project the
data from a high dimensional space in a lower dimensional
space. In addition, PCA helps to find out in what respect one
sample is different from another and which variables con-
tribute most to this difference. The data structure so obtained
can be visualized directly in a graphical way by projection of
objects onto the space defined by the selected PCs. The first
PC contains most of the variability in the data and the suc-
ceeding PCs that are uncorrelated to former ones carry the
remaining variability. The details about this argument is well
described in literature.31,32)

Artificial Neural Network (ANN) Artificial neural net-
works (ANN), also known as “neural networks” (NNs), is

among the most widely used mathematical algorithms for
overcoming non-linearity.30,33) In the last time, ANN has
demonstrated high ability in acquiring useful information
from complex systems, in presence of noise or instrumental
fluctuations, providing robust models.34,35)

Usually, ANN is a computer system able to establish rela-
tionships between independent and dependent variables di-
rectly from raw data and can be used to model complex rela-
tionships between inputs and outputs or to find patterns in
data. A number of different ANN structures have been pro-
posed.3,4) The structure adopted in this study was the Multi-
layer Perceptron (MLP) with back propagation. This tech-
nique has demonstrated to be a very powerful data modeling
tool, able to capture and represent complex input/output rela-
tionships and has been already employed in pharmaceutical
analysis.36,37) MLP is a group of highly interconnected neu-
rons arranged in layers with a feed forward structure. ANN
architecture is based on input and output layers, named
nodes, interconnected via one or more hidden layers. The
nodes in the input and output layers represent the independ-
ent and dependent variables, respectively.

MLP operation is divided into two steps. In a first step of
training, the analytical data are presented as input parame-
ters. These data are transformed by a weighting factor and
the output values are iteratively fed to the hidden layers. Dur-
ing this step, termed ‘learning,’ the MLP algorithm learns to
associate the inputs with the expected outputs. In the last
step, called ‘testing’, MLP generates an output signal as a re-
sponse to previously unknown inputs. The network so devel-
ops a model capable to predict the properties of the analytical
system.

Partial Least Squares 2 (PLS2) PLS2 is a factor
method, that defines a linear relationship between a set of de-
pendent (response) variables and a set of predictor variables.
The processing of data is made contemporarily for all the
components and the regression simultaneously uses spectral
and concentration data. It is an evolution of PLS1 in which,
on the contrary, the data processing is made for one con-
stituent at a time. The original variables are transformed into
a smaller number of PCs and a new matrix constituted by the
new variables PCs and scores allows to build the model for
the prediction of the component concentrations of new sam-
ples.

The number of PCs must be optimized because the predic-
tion error decreases with the number of PCs used until to
reach an optimal value. The most used validation method is
the full cross-validation, in which one reference at a time is
removed from the calibration set, after that the same sample
is predicted by using the calibration built with the others ref-
erences. The selection of number of PCs can be performed
by adopting the minimum SEP, which represents an estimate
of the error when other samples are predicted with that
model. Detailed description of the PLS technique can be
found in literature.38,39)

Experimental
Instruments and Software Absorption spectra were recorded on a

wavelength range of 220—300 nm in a 10 mm quartz cell, by a Perkin-Elmer
Lambda 40P spectrophotometer at the following conditions: scan rate
1 nm/s; time response 1 s; spectral band 1 nm; data density 1 point/nm. The
software UV Winlab 2.79.01 (Perkin-Elmer, Germany) was used for spectral
acquisition and elaboration. The data were computed with programs written
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in MATLAB 7.0 (Mathworks). Application of PLS2 algorithm was sup-
ported by the software package “The Unscrambler 9.7®” (Camo Process As.,
Oslo, Norway).

Chemicals Ethanol 95% was of spectrophotometric grade (J.T. Baker,
Holland). PTFE 0.45 mm membrane filters were purchased from Supelco
(Milan, Italy). CAF was a generous gift from Ogna SpA, Italy; MEP, PPA
and PNA were generous gifts from Novartis SpA, Italy.

The pharmaceutical specialty (Triaminic® Tablets, Novartis Consumer
Health SpA, Italy) was obtained commercially. This formulation contained
25.00 mg CAF, 25.00 mg MEP, 25.00 mg PPA and 25.00 mg PNA per tablet.

Standard and Calibration Solutions Stock solutions of the studied
compounds were separately prepared dissolving in ethanol nearly 20.00 mg
of CAF, MEP, PPA and PNA in 100 ml calibrated flasks. A calibration set of
16 mixture solutions consisting of the drugs in the concentration range of
2.52—20.16 mg/ml for CAF, 2.53—20.24 mg/ml for MEP, 2.48—19.84
mg/ml for PPA and 2.60—20.80 mg/ml for PNA was randomly prepared
from the stock solutions. In order to optimize the building of the ANN meth-
ods, an independent validation set consisting of 12 synthetic mixtures of the
four compounds in the above concentration ranges was prepared. A similar
second validation set consisting of 12 samples was prepared by adding ex-
cipients in order to reproduce as closely as possible the composition of the
commercial specialities. The following excipients were used: natrium chlo-
ride, poliethylene glycol 4000, sucrose magnesium stearate microcrystalline
cellulose and starch. This dataset was used for the external validation of the
ANN and PLS2 models.

Pharmaceutical Sample Solutions Pharmaceutical formulations (Tri-
aminic® Tablets) were assayed by weighing the content of five tablets and re-
ducing them to a fine powder. An amount exactly corresponding to the aver-
age weight was suspended in ethanol and made up to a volume of 10 ml. The
suspension was sonicated for 10 min and then filtered through a PTFE
0.45 mm membrane filter. Samples for analysis were obtained after serial di-
lution 1 : 10 of this filtrate with ethanol until to reach the concentration
ranges above reported and then analyzed. The developed PLS2, ANN and
PCA-ANN calibrations were applied to the spectral data so obtained and the
predicted amounts of CAF, MEP, PPA and PNA in tablets were carried out.

Results and Discussion
Building of ANN and PLS2 Models The UV spectra of

pure CAF, MEP, PPA and PNA were individually recorded in
the spectral region between 200—300 nm. A first examina-
tion of these spectra pointed out a significant instability of
the spectral signals in the region under 220 nm. The study
was so pursued by using just the wavelength region between
220 and 300 nm. Figure 1 shows the single spectra of the
drugs, at the same concentration ratio of the pharmaceutical
tablets, and the mixture spectrum resulting from their sum.

As can be seen in this figure, the spectra of all the com-
pounds overlap along the entire spectral range. Moreover, the
absorptivity values of PPA and PNA along the full wave-
length range result much lower than the other two compo-
nents, making so their determination even more difficult to
carry out.

The complexity of the studied multicomponent system re-
duced the chances of success in the simultaneous determina-
tion of the components by classical spectroscopy methods,
which use measurements at discrete wavelengths. On the
contrary, the multivariate methods can provide a greater reso-
lution power because they use simultaneously a large number
of signals, allowing so to extract more analytical information.

In this paper, the possibility of predicting the concentra-
tion of the four components by UV spectroscopy was studied
through the non-linear calibration technique ANN and com-
pared with the linear method PLS2. The ANN approach was
also coupled with a PCA procedure in such a way to reduce
the number of variables in the data matrix.

A calibration set consisting of 16 quaternary mixture solu-

tions in ethanol with drugs at different concentrations was
prepared. This training set is summarized in Table 1.

The absorbance values of these solutions in the wave-
length set 220—300 nm were collected to build a data set
consisting of a 16�81 (samples�wavelengths) dimension
matrix. PLS2, ANN and PCA-ANN procedures were per-
formed on these data. Special care was taken to ensure that,
in the concentration ranges studied and for all the mixtures,
either the total absorbance did not exceed the linear range of
the spectrophotometer and the contribution of each compo-
nent was additive.

ANN and PCA-ANN methods with different input sets
were executed. Table 2 indicates the topology of these net-
works.

In a first stage, based on the use of the raw spectral data,
ANN was directly applied to concentration and absorbance
data. The dataset having dimension 16�81 was presented as
an input vector to the ANN algorithm. A validation set with
dimension 12�81 was also supplied during the training
phase for early stopping of the training so to prevent over-fit-
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Fig. 1. Absorption Spectra in Ethanol of 4.92 mg/ml CAF, 5.02 mg/ml
MEP, 5.32 mg/ml PPA, 5.50 mg/ml PNA and Their Quaternary Mixture

Table 1. Calibration Set Consisting of Quaternary Mixturesa) in Ethanol
with Drug Concentrations on Four Levels

Sample CAF MEP PPA PNA

1 2.52 5.06 4.96 20.80
2 2.52 10.12 9.92 20.80
3 2.52 5.06 19.84 5.20
4 2.52 10.12 19.84 10.40
5 5.04 20.24 2.48 20.80
6 5.04 10.12 9.92 5.20
7 5.04 20.24 2.48 2.60
8 5.04 10.12 19.84 10.40
9 10.08 2.53 2.48 20.80

10 10.08 20.24 4.96 5.20
11 10.08 2.53 19.84 5.20
12 10.08 20.24 9.92 2.60
13 20.16 2.53 2.48 10.40
14 20.16 5.06 4.96 10.40
15 20.16 2.53 9.92 2.60
16 20.16 5.06 9.92 5.20

a) Concentration is expressed as mg/ml.



ting.
There are no formal ways of determining the size of a neu-

ral network and the solutions are evaluated by means of em-
pirical testing. The number of hidden neurons is a function of
the complexity of a multicomponent mixture and other ex-
perimental factors, the number of input and output parame-
ters and the number of training cases available. Hornik et
al.40) recommend to start with only one hidden layer, and if
the results are not good, the number of hidden layers will
grow up. In the application of ANN and PC-ANN, a number
of different configurations of hidden neurons was tested and
the optimal number of neurons in the hidden layer providing
the best results was selected.

A two layer ANN was built with the non-linear transfer
function “tansig” in first hidden layer and the linear transfer
function “purelin” in output layer. By using this structure, a
rapid convergence of the inputs was reached and a linear
mapping of the outputs provided to decrease the generaliza-
tion error.

In applying the PCA-ANN approach, the calibration and
validation datasets were reduced by PCA and three outputs
were gathered. The first output was a loading matrix having
size 81�4 (wavelengths�loadings), each column consisting
of coefficients for one PC. The columns were made in order
of decreasing component variance. The second output was
the matrix of the principal component scores having size
16�4 (samples�scores). The scores were the data obtained
from the transformation of the original data into the space of
the PCs. The third output was a vector containing the 4
eigenvalues of the covariance matrix of input. The first four
PCs were observed to represent 99.9% of the total variance.
Therefore, the first four columns of the score matrix were
used to compose new datasets for learning and testing. Both
calibration and validation datasets were so presented to the
PCA-ANN, which was a two-layered neural network with
tansig and purelin transfer functions in hidden and output
layers, respectively.

Performance of the two neural networks were compared by
generalization accuracy and convergence speed. Figures 2
and 3 point out the calculated errors versus the number of it-
erations for the training step of the neural networks. Perfor-
mance in terms of mean square error was obtained during the
training process of the networks. The error normally de-
creased during the initial phase of training but, when the net-
work begins to overfit the data, the error on the validation set
will typically begin to increase. When the validation error in-
creased for a specified number of iterations, training was
stopped and saved.41)

Validation was performed by adopting the standard error
of calibration (SEC) as a criterion to estimate the error when
the samples are predicted.

A third calibration model was defined by PLS2 algorithm,
by using concentration values and spectral data in the range
220—300 nm. The model was then validated by full cross-
validation and the SEP values calculated each time after a
new factor was added to the model. The optimum number of
factors was found to be 4.

Validation furnished reliable assay results with SEC values
for ANN and PCA-ANN methods not over 0.6 and SEP val-
ues for PLS2 not over 0.4. Table 3 shows SEC and SEP val-
ues, calculated from the difference between actual and pre-
dicted concentrations, and the statistical parameters from the
regression analysis on the nominal and predicted concentra-
tions. Correlation coefficients (R2) confirmed an optimal cor-
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Table 2. ANN Topologies in the Applied Networks

ANN PCA-ANN

Input 81 4
Hidden 10 5
Output 4 4
Transfer functionsa) tansig/purelin tansig/purelin

a) Tansig and purelin are transfer functions used in Matlab.

Fig. 2. Error Performance for Training of ANN with Raw Data Inputs

Fig. 3. Performance (Mean Square Error) for Training of ANN with PCA
Applied Inputs

Table 3. Statistical Data Obtained from Internal Validation on the Refer-
ence Samples by ANN, PCA-ANN and PLS2

Method Parameter CAF MEP PPA PNA

ANN SEC 0.355 0.478 0.348 0.379
Slope 0.987 0.985 1.001 1.027
Intercept 0.003 �0.001 0.001 0.001
R2 0.984 0.980 0.987 0.975

PCA-ANN SEC 0.254 0.386 0.392 0.213
Slope 1.002 0.975 1.015 0.997
Intercept 0.002 �0.002 �0.001 �0.000
R2 0.998 0.999 0.992 0.986

PLS2 SEP 0.219 0.243 0.360 0.262
Slope 1.007 1.042 1.050 0.997
Intercept 0.002 �0.003 �0.003 �0.002
R2 0.993 0.999 0.998 0.990



respondence between actual and predicted concentrations.
External Validation of the Models The defined chemo-

metric models were validated through analysis of an external
prediction set consisting of 12 quaternary mixtures with the
same concentration ranges adopted in the calibration samples
and spiked with excipients commonly used in tablet formula-
tions. The values of SEP were calculated for all the methods
and components and summarized in Table 4.

The parameters from the regression analysis between nom-
inal and predicted concentrations, mean recoveries and rela-
tive standard deviations were also calculated and listed in the
same table. Mean accuracy, expressed as % recovery
(�R.S.D.), was found to be 101.58 (�2.05), 100.61 (�1.52)
and 99.72 (�2.42) for ANN, PCA-ANN, and PLS2, respec-
tively.

A good coincidence was observed among the results ob-
tained by the application of all the models in the estimation
of CAF and MEP. PCA-ANN gave brilliant determination re-
sults also in the assay of PPA and PNA, slightly better than
the results obtained by application of the simple ANN. Prob-
ably, the reduction of dimensionality of the input data al-
lowed a selection of the most useful analytical information.
In contrast, a significant difference between nominal amounts
and predicted values were obtained in the prediction of PPA
and PNA when the model PLS2 was applied. This inaccuracy
was supposed due to the low absorptivity of these compo-
nents, which made them more sensitive to instrumental noise
or to interferences caused by some excipients. PCA-ANN
gave the best results presumably because this method is par-
ticularly well suited to account for any non-linear informa-
tion from a such complex analytical system.

Application of the Models to the Assay of Pharmaceuti-
cals The above defined PLS2, ANN and PCA-ANN mod-
els were applied to the determination of CAF, MEP, PPA and
PNA content in the commercial tablets, following the proce-
dure above reported. The obtained results are shown in Table

5, also listing some statistical parameters, as standard devia-
tion, percent relative standard deviation and standard error.

The measurements and the statistical parameters con-
firmed the results carried out in the external validation on the
synthetic mixtures. A satisfactory coincidence between la-
beled and predicted amounts was observed in the estimation
of all the drugs by applying the model PCA-ANN. Slightly
less accurate results were obtained from application of the
ANN model and significant errors were recorded in the pre-
diction of PPA and PNA when the model PLS2 was used.

Conclusion
In this work, ANN and PCA-ANN multivariate methods

demonstrated high resolution power in assaying a very com-
plex pharmaceutical mixture, consisting in four drugs pre-
senting a severe overlapping of their UV spectra. Great ad-
vantages of these methods are simplicity, rapidity and low
cost, requiring neither sophisticated instrumentation nor any
prior separation procedure. The ANN models were compared
with a PLS2 model. The statistical parameters showed that
both the ANN models were reliable, but PCA-ANN demon-
strated a better performance in the prediction of the valida-
tion set samples, showing lower residual errors. Moreover,
convergence speed for PCA-ANN was shorter than ANN, as
verified in the training graphs. PLS2 also gave satisfactory
results for the assay of CAF and MEP but proved to be less
accurate in assaying PPA and PNA, probably for the non-lin-
ear interferences due to instrumental noise or the presence of
excipients from tablet extraction. The successful application
of the proposed methods to the quality control analysis of
quaternary pharmaceutical preparations, demonstrated that
the ANN procedures can be a valid alternative to the classi-
cal instrumental or multivariate procedures also for linear
data systems.
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Table 4. Statistical Data Obtained from External Validation on the Prediction Samples of ANN, PCA-ANN and PLS2 Methods

ANN PCA-ANN PLS2
Parameter

CAF MEP PPA PNA CAF MEP PPA PNA CAF MEP PPA PNA

SEP 0.148 0.308 0.295 0.323 0.094 0.130 0.216 0.194 0.153 0.076 0.279 0.253
Slope 1.011 1.016 1.032 1.027 0.998 0.992 1.028 1.021 1.049 0.972 0.955 0.968
Intercept 0.004 �0.028 �0.565 �0.058 0.065 0.029 �0.067 �0.058 �0.032 �0.057 0.075 �0.027
Correlation 1.000 0.999 1.000 0.998 1.000 0.999 0.999 1.000 0.999 0.999 0.998 0.999
Recovery 101.48 101.21 102.41 102.22 100.74 99.27 101.34 101.08 101.48 101.72 100.64 102.02
S.D. 1.93 2.07 1.93 2.43 1.35 1.46 2.08 1.21 1.63 1.05 2.12 1.53
R.S.D. 1.90 2.05 1.88 2.37 1.34 1.47 2.05 1.20 1.28 1.72 1.84 2.68

a) Concentration is expressed as mg/ml; S.D.: standard deviation; R.S.D.: relative standard deviation.

Table 5. Statistical Results by Applying ANN, PCA-ANN and PLS2 Methods to the Analysis of Pharmaceutical Formulations

ANN PCA-ANN PLS2

CAF MEP PPA PNA CAF MEP PPA PNA CAF MEP PPA PNA

Meana) 25.74 25.82 24.38 24.12 24.92 25.45 25.82 24.03 24.53 26.24 27.53 23.87
S.D. 0.53 0.66 0.58 0.65 0.32 0.43 0.41 0.33 0.52 0.42 1.15 1.35
R.S.D. 2.06 2.56 2.90 3.24 1.28 1.69 1.49 1.57 2.12 1.60 3.89 4.06
Recovery 102.96 103.28 97.52 96.48 99.68 101.8 103.28 96.12 98.12 104.96 110.12 95.48

a) Results are expressed as mg/tablet and are referred to average of four replicates (n�4); S.D.: standard deviation; R.S.D.: relative standard deviation.
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