
In recent years, the “quality by design (QbD)” concept has
been introduced in the Q8 guideline of the International Con-
ference on Harmonisation (ICH).1) This guideline has neces-
sitated the establishment of a science-based rationale in phar-
maceutical formulation development. In particular, this
guideline has recommended to establish a design space,
multi-dimensional combination of input variables and
process parameters that have been demonstrated to provide
assurance of quality, in formulation optimization and manu-
facturing process estimation. The design space describes the
relationship between several process inputs (material attrib-
utes and process parameters) and critical quality attributes
(CQAs). Therefore, it is necessary to establish a design space
to identify multidimensional combinations and interactions
of the many causal factors that determine the quality of the
target.2) When describing a design space, a design of experi-
ments (DOE) is effectively used for determining the relation-
ship between factors affecting a process and the output of the
process.3,4) Moreover, a response surface method (RSM) is
useful for the visual understanding of factors and the facilita-
tion of the clarification of problems to be solved for opti-
mization in a pharmaceutical development study.5—11) The
design space is represented by the response surface model re-
solved at the limit of a satisfactory response, and it is deter-
mined from the region of successful operating ranges for
multiple critical quality attributes. Furthermore, the overlaps
of some response surface models for multiple quality attrib-
utes enable the generation of a common design space with
successful operating ranges.1) Thus, working within the de-
sign space is not considered as a post approval change.

Therefore, it is important to evaluate the reliability of the
design space, especially the acceptable range of input param-

eters. The reliability of the classical response surface model
using quadratic polynomial equations can be evaluated by a
statistical analysis. However, the predictions based on the
quadratic polynomial model often exhibit poor estimation in
nonlinear complex problem. To resolve the nonlinear prob-
lem, computer-based artificial intelligence techniques have
been used for RSM modeling in recent times.12—14) On the
other hand, the reliability of the nonlinear response surface
estimated by a computer-based method cannot be directly
evaluated using a conventional mathematical method. Thus,
we applied a bootstrap (BS) resampling technique15) to evalu-
ate the reliability of the optimal solutions predicted by RSM
incorporating multivariate spline interpolation (RSMS).14) We
previously reported that the novel evaluation method based
on a BS technique was suitable for evaluating the accuracy
and precision of the optimal solution.16) Moreover, we con-
firmed that self-organizing map (SOM) clustering17) rein-
forced the applicability of the novel evaluation method.18)

Therefore, we quantitatively evaluated the reliability of the
response surface and the design space predicted by RSMS

using the BS and SOM techniques. In this study, we used an
experimental dataset of mefenamic acid tablets prepared by a
high-shear granulation method.

Theoretical
BS Resampling The BS resampling technique is a com-

puter-based technique used for estimating the standard error
of an empirical distribution of an observed sample.15,19—22)

Let x�(x1, · · · , xn) be an n sample with an unknown distribu-
tion function F depending on an unknown real parameter q .
The problem is to evaluate parameter q by a statistic q

�
�s(x)

from sample x and evaluate the estimation accuracy when
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distribution F is unknown. In order to evaluate the estimation
accuracy, B samples were generated from the initial sample x
by resampling. These samples were called BS samples and
denoted by x*b.

A BS sample x*b�(x1*
b, · · · , xn*

b) was generated by random
resampling by replacing the initial sample x. The distribution
function of a BS sample x*b is F

�
, which is the same as the

empirical distribution of x. A BS replicate of estimator
q
�
�s(x) is q

�
*b�s(x*b). Therefore, for the mean of sample x,

the estimator is s(x)�(1/n)S n
i�1xi, and a BS replicate is

s(x*b)�(1/n)S n
i�1xi*

b.
Then, the BS estimate of the standard deviation of q

�
de-

noted by sboot(q
�

) is given by Eqs. 1 and 2 as follows:

(1)

(2)

Novel reliability evaluation procedures for a response surface
and an optimal solution have been applied in this technique.

Self-Organizing Map A self-organizing map (SOM) is
a feedforward neural network that implements a nonlinear
projection from high-dimensional input vectors onto a low-
dimensional (typically two-dimensional) array of nodes,
called a map.17,23) At time t, each neuron k is characterized by
the reference vector mk(t)�[mi1(t), mi2(t), · · · , min(t)] and a po-
sition in low-dimensional (typically two-dimensional) nodes
represented by the vector wi(t)�[wi1(t), wi2(t), · · · , win(t)].
Each input vector x(t)�[x1(t), x2(t), ···, xn(t)] is compared with
each reference vector, and the winner vector is considered to
be that closest to the stimulus. The weights of the weight
vectors in the neighborhood of the winner vector are adjusted
with a strength g(v, t) that is proportional to their distance to
the winner vector, v. The neighborhood function g (v, t) is
typically Gaussian with standard deviation s . Winner vectors
are adjusted on the basis of the following equation.

(3)

where a(t) is the algorithm’s learning rate. Both a(t) and
s(t) typically decrease exponentially during the ordering
phase and then decrease linearly in the convergence phase.

Experimental
Materials The formulation of mefenamic acid tablets is shown in Table

1. Mefenamic acid (Daiichi Sankyo Chemical Pharma Co., Japan), lactose
monohydrate (200-mesh grade, DMV International, Netherlands), micro-
crystalline cellulose (Ceolus® PH-101, Asahi Kasei Chemicals, Japan), low-
substituted hydroxypropylcellulose (L-HPC® (LH-21), Shin-Etsu Chamical
Co., Japan), hydroxypropylcellulose (HPC-L®, Nippon Soda Co., Japan),
and magnesium stearate (Nitto Kasei Kogyo K.K., Japan) were all of grades
conforming to the current ‘Japanese Pharmacopoeia’ (JP).

Preparation Method of Sample Tablets Mefenamic acid was milled
using an impact mill (Fine impact mill 100 UPZ, Hosokawa Micron Corp.,
Japan) with an impeller speed of 10000 rpm. The milled mefenamic acid
(volume mean diameter approximately 9.5 mm), lactose monohydrate, low-
substituted hydroxypropylcellulose, microcrystalline cellulose, and hydrox-
ypropylcellulose were blended in a high-shear mixer (NMG-1L, Nara Ma-
chinery Co., Japan) for 2 min (impeller rotation speed was set at 700 rpm).
After blending, water was added to the mixture, and that was kneaded con-
tinuously in a high-shear mixer. The granulation conditions are listed in
Table 2, and the chopper rotation speed was set at 1500 rpm. The wet mass
was dried in a fluid-bed dryer (Flow Coater Mini, Freund Corp., Japan) up to
40 °C for the exhaust air temperature (inlet air temperature was set at 80 °C).
The coarse granules were screened in a screening mill (Quadro Comill,

Powrex Corporation, Japan) with an open mesh screen of 1.1 mm in diame-
ter and an impeller speed of 2200 rpm. The screened granules were lubri-
cated with magnesium stearate and blended in a V-shaped blender (Type S-5,
Tsutsui Scientific Instruments Co., Ltd., Japan) for 10 min (rotation speed
was set at 51 rpm). The final blend was compressed into tablets using a uni-
versal testing machine (Autograph AG-20kNI, Shimadzu Co., Japan) and a
round-shaped punch with double radii, 6.5 mm in diameter. The compression
force was conducted at approximately 8 kN.

In this study, the amount of water added (X1), impeller rotation speed (X2),
and kneading time (X3) were selected as causal factors of the granulation
process. These variables were assigned according to the Box and Behnken
design DOE. We prepared 14 batches of mefenamic acid tablet formulations
under various manufacturing conditions.

Determination of Response Variables The dissolution ratio of mefe-
namic acid for the first 15 min (Y1), hardness of the core tablets (Y2), and
particle size of the screened granules (Y3) were selected as the response vari-
ables that were to be evaluated for the resulting tablets and granules. The
values of these variables were obtained from the mean of 3 determinations.

a) Dissolution: Dissolution testing was performed by a paddle method
according to the recommendations of the current JP at 50 rpm in 900 ml of
phosphate buffer solution (pH 6.8) containing 2% sodium lauryl sulfate at
37 °C. The dissolved mefenamic acid was assayed by an automated flow-
through UV spectrophotometric method at 285 nm with a 10-mm-long cell
(Automated dissolution apparatus, Toyama Sangyo Co., and Shimadzu Co.,
Japan).

b) Hardness: The hardness of the resulting tablets was measured using a
hardness tester (Tablet tester PTB 302, Pharma Test Apparatebau AG, Aus-
tria).

c) Particle Size of the Screened Granules: The particle size of the
screened granules was measured using an automated sieving apparatus
(Robot Sifter RPS-85P, Seishin Enterprise Co., Japan) with 20, 32, 48, 65,
100, 150, and 200 mesh sieves. The particle size distribution and the median
diameter were calculated by the ratio of the residual weight of the granules
on each sieve.

The experimental dataset was prepared according to the Box and Behnken
design DOE, which consisted of 3 causal factors and 3 response variables
with 14 batches of mefenamic acid tablets. The dataset is named Original
dataset, and shown in Table 3.
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Table 1. Components and Compositions of Mefenamic Acid Tablets

Components Quantity (mg/tablet)

Mefenamic acid 25.0
Lactose monohydrate 49.5
Microcrystalline cellulose 5.0
Low-substituted hydroxypropylcellulose 15.0
Hydroxypropylcellulose 5.0
Magnesium stearate 0.5

Total 100.0

Table 2. Granulation Conditions of Mefenamic Acid Tablets with Box and
Behnken Experimental Design

Experiment
Factor level Amount of Impeller Kneading 

water added rotation speed time 
number

X1 X2 X3 (%), X1 (rpm), X2 (min), X3

1 �1 0 1 30 700 10
2 0 �1 1 40 100 10
3 0 1 1 40 1300 10
4 1 0 1 50 700 10
5 �1 �1 0 30 100 6
6 �1 1 0 30 1300 6
7 1 �1 0 50 100 6
8 1 1 0 50 1300 6
9 �1 0 �1 30 700 2

10 0 �1 �1 40 100 2
11 0 1 �1 40 1300 2
12 1 0 �1 50 700 2
13 0 0 0 40 700 6
14 0 0 0 40 700 6



Response Surface Analysis and Simultaneous Optimization of Origi-
nal Dataset The response surfaces of each response variable were mod-
eled using the RSMS method.24) The simultaneous optimum solution was
predicted according to the generalized distance function method defined in
Eq. 4.25)

(4)

where S(X) is the distance function generalized by the standard deviation
SDk of the observed values for each response variable, FDk(X) is the opti-
mum value of each response variable optimized individually over the experi-
mental region and FOk(X) is the estimated value of all the responses given in
the same set of causal factors, i.e., X. The simultaneous optimum solution
can be estimated by minimizing S(X) under the restriction of the experimen-
tal region. In this study, we considered the importance of three response
variables at the simultaneous optimization were equality. Therefore, the
weighting coefficients of these responses were set to the same value.

Evaluation Method for an Optimal Solution and an Acceptance
Range Based on BS Technique The reliability of the simultaneous opti-
mal solution and the acceptance range of 3 responses were evaluated by the
BS evaluation technique. This process is shown in Fig. 1 and has been de-
scribed as follows:

Step 1. The BS dataset corresponding to the respective original datasets
(comprising n data points) is generated by BS resampling that is repeated n
times to form an ensemble comprising n results.

Step 2. Step 1 is repeated B times, and B units of the BS dataset are gen-
erated. In this study, the frequency of BS resamplings was set at 100, 200,
300 and 500.

Step 3. The response surface is modeled for each BS dataset.
Step 4. The optimal solution is calculated X* optim, X*1 optim, X*2

optim · · · X*B optim and Y* optim, Y*1 optim, Y*2 optim · · · Y*B optim from
each BS response surface, and the distribution of the optimal solution is
generated.

Step 5. The optimal solution and standard deviation of the BS analysis
are calculated using Eqs. 5 and 6 as follows:

(5)

(6)

where F*b is the optimal solution of a specified property that is calculated
from each BS dataset, FB.m is the BS optimal solution of the same property
corresponding to the original solution, and SDB is the standard deviation of
the distribution of F*b.
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Fig. 1. Evaluation Process for Estimating the Reliability of an Optimal Formulation and Response Surface (Including Design Space) Based on the Boot-
strap Resampling Technique



Step 6. The response surfaces, modeled from B units of the BS dataset,
are plotted in a multidimensional space, and the standard deviation of the
predicted solution is calculated for all grids of the space.

The accuracy of the original solution, which was calculated from the orig-
inal dataset, can be evaluated by comparing it with the BS solutions. If the
accuracy of a BS solution deviates from that of the original solution, the
original solution is considered to have low reliability with regard to accu-
racy. The precision of the original solution can be evaluated using the stan-
dard deviation of BS optimal solutions. Moreover, the reliability of the re-
sponse surface can also be evaluated from the standard deviation of the pre-
dicted solution in each grid of the space. A large standard deviation indi-
cates poor precision of the response surface model and the optimal solution.

Evaluation Indices of Accuracy for Optimal Solutions The value of d
used as the evaluation index of accuracy of the optimal solution was calcu-
lated using Eq. 7. This value represents the similarity between the original
solution and the BS optimal solution.

(7)

where F is the original solution of a specified property, and FB.m is the BS
optimal solution of the same property corresponding to the original solution.

Software JMPTM 8 (SAS institute Inc., U.S.A.) was used for preparing
the DOE and the statistical analysis. dataNESIATM (Yamatake Corp., Japan)
was used for generating the response surface and estimating the optimal so-
lution. This software consists of a multidimensional spline interpolation pro-
gram and a nonlinear optimization program.24) Viscovery® (Eudaptics Soft-
ware Gmbh, Austria) was used for SOM clustering. This software can order
complex data based on similarity. The ordered data are separated into clus-
ters on the basis of similarity, and these clusters are shown on a multi-col-
ored map. The resulting map can be used to extract the features hidden in
the data. Voxler® (Golden software Inc., U.S.A.) was used for the multi-di-
mensional visualization of the response surface models.

Results and Discussion
Response Surface Modeling by RSMS The dissolution

ratio of mefenamic acid for the first 15 min (Y1), hardness of
the core tablets (Y2), and particle size (median diameter) of
the screened granules (Y3) of each formulation are listed in
Table 3. These parameters varied across the manufacturing
conditions. The reproducibility for individual values of 3 de-
terminations was fairly good. The response surfaces of Y1,
Y2, and Y3 were generated by RSMS as functions of 3 causal
factors: the amount of water added (X1), impeller rotation
speed (X2), and kneading time (X3) in the granulation
process. Representative examples of the response surfaces
are shown in Fig. 2. These response surfaces showed X1 and
X2 that were interactively affected for three target variables.
From this examples, we considered that the increment of the
water amount (X1) and impeller rotation speed (X2) made the
granules size (Y3) large and stiff, and the dissolution property
(Y1) and hardness (Y2) decreased. The reliability of each re-
sponse surface was estimated by using a conventional leave-
one-out cross-validation (LOOCV) method. These results are
shown in Fig. 3. The values of the correlation coefficient (r)
were approximately 0.5—0.7, which suggested that the relia-
bility of all the response surfaces was poor. The shapes of
these response surfaces (for example, as shown in Fig. 2)
were rather complicated, indicating that the effect of individ-
ual data points in the response surface model was sufficiently

d
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Fig. 2. The Response Surfaces of Three Target Variables (Y1: % Dissolved Mefenamic Acid at 15 min, Y2: Hardness of Core Tablets, and Y3: Particle Size (Median
Diameter) of Screened Granules as a Function of the Amount of Water Added (X1) and the Impeller Rotation Speed (X2) at a Constant Kneading Time (X3: 6 min))

Table 3. Original Experimental Design Dataset of Mefenamic Acid Tablets

Experiment
Factor level %Dissolved 

Hardness
Particle size (mm) 

mefenamic (median diameter), 
number

X1
a) (%) X2

b) (rpm) X3
c) (min) acid at 15 min, Y1

(N), Y2 Y3

1 30 700 10 70.4 (2.3) 39.2 (0.5) 81.1 (4.8)
2 40 100 10 63.2 (1.9) 49.2 (4.9) 82.6 (10.2)
3 40 1300 10 45.4 (1.0) 30.5 (0.9) 151.0 (8.7)
4 50 700 10 8.3 (1.4) 28.4 (5.2) 326.4 (14.8)
5 30 100 6 66.4 (0.5) 46.4 (1.3) 76.8 (7.9)
6 30 1300 6 67.4 (2.3) 40.2 (1.6) 90.6 (6.8)
7 50 100 6 63.3 (1.5) 30.1 (3.5) 114.9 (10.3)
8 50 1300 6 11.6 (3.1) 28.8 (3.2) 317.6 (13.3)
9 30 700 2 71.5 (0.7) 45.4 (1.6) 83.3 (6.8)

10 40 100 2 65.2 (0.9) 55.4 (2.9) 82.3 (6.9)
11 40 1300 2 65.0 (0.6) 35.0 (3.2) 122.1 (15.0)
12 50 700 2 22.8 (2.8) 45.4 (8.1) 245.8 (12.9)
13 40 700 6 51.4 (5.7) 43.7 (2.7) 136.3 (11.7)
14 40 700 6 42.9 (2.8) 49.9 (3.7) 138.7 (15.9)

( ): Standard deviation for individual values of 3 determinations. a) Amount of water added (%). b) Impeller rotation speed (rpm). c) Kneading time (min).



612 Vol. 59, No. 5

Table 4. Optimum Formulations of Three Response Variables and Simultaneous Optimum Formulation Predicted by RSMS

Optimized formulations Predicted responses

X1
a) (%) X2

b) (rpm) X3
c) (min) Y1

d) (%) Y2
e) (N) Y3

f) (mm)

Optimum formulation of Y1 30.1 732 5.6 68.0 44.5 82
Optimum formulation of Y2 38.6 298 3.1 61.4 51.1 97
Optimum formulation of Y3 48.9 922 7.1 19.0 32.5 276
Simultaneous optimum formulation 43.7 700 2.3 45.0 46.2 166

a) Amount of water added. b) Impeller rotation speed. c) Kneading time. d) % Dissolved mefenamic acid at 15 min. e) Hardness. f) Particle size (median diameter).

Fig. 3. Relationships between Experimental and Predicted Values of Three Target Variables (Y1: % Dissolved Mefenamic Acid at 15 min, Y2: Hardness of
Core Tablets, and Y3: Particle Size (Median Diameter) of Screened Granules)

Fig. 4. Response Spaces and Optimum Formulations of Three Target Variables (Y1: % Dissolved Mefenamic Acid at 15 min, Y2: Hardness of Core Tablets,
and Y3: Particle Size (Median Diameter) of Screened Granules), and Simultaneous Optimum Formulation Predicted by RSMS



high. Therefore, the response surface was considered to be
widely changed by leaving out individual experimental data
in the LOOCV process.

Prediction of the Optimal Formulation by RSMS and
Generalized Distance Function Method The optimal for-
mulation of three responses for X1, X2, and X3, and the pre-
dicted values for Y1, Y2, and Y3 calculated by RSMS and gen-
eralized distance function method are shown in Table 4. The
simultaneous optimal solutions for X1, X2, and X3, and the
predicted values for Y1, Y2, and Y3 are additionally shown in
Table 4. Moreover, the correlation of these results are visu-
ally described in Fig. 4. The optimal formulation of each re-
sponse sufficiently maximized the target variables. However,
these optima were not appropriate conditions for the other
targets. On the other hand, the simultaneous optimal formu-
lation predicted by the generalized distance function method
adequately maximized the three targets.
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Table 5. Original Solution, Bootstrap Optimal Solution, Bootstrap Standard Deviation, and 95% Confidence Interval of Optimal Solutions Generated by
Different Frequencies of Bootstrap Resampling

Resampling
Optimized formulations Predicted responses

frequency
X1

b) (%) X2
c) (rpm) X3

d) (min) Y1
e) (%) Y2

f) (N) Y3
g) (mm)

N�0a) 43.7 700 2.3 45.0 46.2 166
N�100 41.2 (2.8) 671 (172) 2.4 (1.3) 50.9 (6.3) 46.8 (3.0) 145 (22)

[33.9—45.4] [111—957] [2.0—6.1] [41.8—62.8] [41.4—53.5] [103—181]
N�200 41.5 (2.6) 677 (155) 2.5 (1.3) 49.8 (6.3) 46.5 (2.8) 148 (23)

[36.0—46.2] [208—914] [2.0—6.0] [40.5—64.1] [41.8—53.1] [99—184]
N�300 41.4 (2.5) 673 (167) 2.4 (1.1) 50.1 (6.1) 46.6 (3.2) 148 (20)

[35.5—45.6] [130—914] [2.0—6.0] [42.6—65.2] [41.9—53.2] [101—181]
N�500 41.3 (2.7) 677 (165) 2.4 (1.2) 50.6 (6.3) 46.6 (2.9) 146 (22)

[34.9—45.4] [111—957] [2.0—6.0] [41.3—64.6] [41.9—53.4] [100—182]

( ): Bootstrap standard deviation. [ ]: 95% confidence interval calculated by percentile method. a) Obtained from the original dataset. b) Amount of water added.
c) Impeller rotation speed. d) Kneading time. e) % Dissolved mefenamic acid at 15 min. f) Hardness. g) Particle size (median diameter).

Fig. 5. Histograms of Optimal Solutions Generated by Bootstrap Resampling (N�500)

Fig. 6. The Reason for Mingling the Global Solution and Local Solutions
in the Bootstrap Resampling Process



Evaluation of the Optimal Formulation by the BS
Method BS datasets were generated by BS resampling that
was set at a frequency of 100, 200, 300, and 500. The results
of the optimal formulations and the predicted responses with
a 95% confidence interval are shown in Table 5. The BS opti-
mal solutions as well as the standard deviations were almost
constant despite altering the resampling frequency. There-
fore, we considered that a resampling frequency of more than
100 was sufficient to estimate the stability of the optimal for-
mulations. The distributions of the BS optimal solutions
when bootstrapping was repeated 500 times are shown in
Fig. 5. The BS optimal solutions were moderately the same
as the original solution. The distributions of the BS optimal
solutions were almost symmetrical. However, several solu-
tions that had been quite different from the original solution
were contained. We previously reported that this problem
was the risk involved in the BS resampling process, as shown
in Fig. 6.26) As mentioned above, BS datasets are generated
from the original data. If the corrected data points are located
near the original solution, the BS optimal solution is consis-
tent with the global optima. On the other hand, if the cor-
rected data points are far from the original solution, the BS
optimal solution may lead to a local optima. Therefore, we
interpret the problem as easily occurring when the relation-

ships between causal factors and responses are markedly
nonlinear. Consequently, it was considered that global and
local solutions were mixed in the distributions of BS solu-
tions as shown in Fig. 5.
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Table 6. Bootstrap Optimal Solutions and Bootstrap Standard Deviations in the Self-Organizing Map Clusters for Optimal Solution Estimated from Boot-
strap Samples

Optimized formulations Predicted responses

X1
c) (%) X2

d) (rpm) X3
e) (min) Y1

f) (%) Y2
g) (N) Y3

h) (mm)

Original solutiona) 43.7 700 2.3 45.0 46.2 166
Bootstrap solutionb)

Cluster 1 42.4 678 2.0 48.9 46.5 153
(324 data) (1.5) (106) (0.1) (5.0) (2.5) (18)
Cluster 2 38.3 783 2.1 56.0 46.5 130
(96 data) (2.2) (110) (0.3) (6.9) (3.1) (25)
Cluster 3 38.8 724 5.6 51.7 45.3 130
(54 data) (2.6) (114) (1.4) (7.0) (1.8) (22)
Cluster 4 44.1 166 2.0 49.7 51.3 148
(26 data) (2.7) (79) (0.0) (5.8) (3.3) (22)

( ): Bootstrap standard deviation. a) Obtained from the original dataset. b) Bootstrap resampling frequency, 500 times. c) Amount of water added. d) Impeller rota-
tion speed. e) Kneading time. f) % Dissolved mefenamic acid at 15 min. g) Hardness. h) Particle size (median diameter).

Fig. 7. Self-Organizing Maps of Optimal Solutions for Input Factors Estimated from Bootstrap Samples (N�500)

Fig. 8. Comparison of the d Index to Determine the Accuracy of the Opti-
mal Solution in the Self-Organizing Map Clusters



To resolve this problem, SOM clustering was applied for
dividing the global and the local solutions. The distributions
of the optimal solutions were classified by SOM clustering.
The SOMs of the BS optimal formulations of each causal
factor are shown in Fig. 7. In the SOM analysis, input vari-
ables of three causal factors were standardized by the stan-
dard deviation of each factor. The BS optimal formulations
were classified into 4 clusters, as shown in Table 6. Then, the
d index corresponding to the accuracy of each optimal solu-
tion was calculated using Eq. 7 in each cluster (Fig. 8). The
BS optimal solution in the case of cluster 1 was similar to the

original solution. Moreover, the d values of cluster 1 were
apparently smaller than those of the other clusters. A small d
value indicates high accuracy. Therefore, the global optimal
solution was considered to be contained in the BS optimal
solutions of cluster 1. The histograms of the optimal solu-
tions in cluster 1 are shown in Fig. 9. These distribution
ranges were almost narrower than those of the original distri-
butions (shown in Fig. 5). This indicated that the SOM could
satisfactorily separate the mixture of the BS optimal solu-
tions into several groups.

In the previous study, the number of BS resamplings re-

May 2011 615

Fig. 9. Histograms of Optimal Solutions in Cluster 1 Separated by Self-Organizing Map Clustering of the 500 Bootstrappings of the Original Dataset

Fig. 10. Statistical Graphics of the Bootstrap Optimal Solutions in Cluster 1 Separated by Self-Organizing Map Clustering of the 500 Bootstrappings of
the Original Dataset (Y1: % Dissolved Mefenamic Acid at 15 min, Y2: Hardness of Core Tablets, and Y3: Particle Size (Median Diameter) of Screened Gran-
ules) as a Function of the Amount of Water Added (X1) and the Impeller Rotation Speed (X2))



quired for the evaluation of the optimal solution was at least
around 300.16) Therefore, we considered cluster 1 to be ap-
propriate for determining the reliability of the response sur-
face and optimal solution calculated from the original
dataset. For the representative examples of BS analysis, the
normal contour ellipsoids of three responses are shown in

Fig. 10. The original optimal formulation are almost plotted
in the middle of the normal counter ellipsoids, and we could
visually evaluate the fluctuation of the predicted solutions
from the dimensions of the ellipsoids.

Evaluation of the Design Space by the BS Technique in
Combination with SOM Clustering The response sur-
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Fig. 11. The Original Response Surfaces, Bootstrap Response Surfaces, and Averages of Bootstrap Response Surfaces of Three Target Variables (Y1: %
Dissolved Mefenamic Acid at 15 min, Y2: Hardness of Core Tablets, and Y3: Particle Size (Median Diameter) of Screened Granules) as a Function of the
Amount of Water Added (X1) and the Impeller Rotation Speed (X2) at a Constant Kneading Time (X3: 2.3 min))

Fig. 12. The Design Space of Three Target Variables Derived from the Original Response Surfaces and Those of the Conservative Limit of the 95% Confi-
dence Interval (Y1: % Dissolved Mefenamic Acid at 15 min, Y2: Hardness of Core Tablets, and Y3: Particle Size (Median Diameter) of Screened Granules) as
a Function of the Amount of Water Added (X1) and the Impeller Rotation Speed (X2) at a Constant Kneading Time (X3: 2.3 min)



faces of the 3 response variables Y1, Y2, and Y3 modeled from
all the BS datasets contained in cluster 1 are plotted in the
same coordinates with the original response surface. Repre-
sentative examples of these results are shown in Fig. 11. The
plots of BS response surfaces are distributed around the orig-
inal response surfaces. Moreover, the average of all BS re-
sponse surfaces sufficiently corresponded with the original
response surface (shown in Fig. 11). These results support
the hypothesis that the novel method based on a BS resam-
pling technique can be applied for evaluating the reliability
of the original response surface and optimal solution.

Conservative limits of the 95% confidence intervals of the
acceptance ranges in 3 response variables were calculated
using the standard deviations of the BS response surfaces.
Examples of the results are shown in Fig. 12. These figures
clearly show the difference between the acceptance range de-
rived from the original response surface and the robust de-
sign space estimated by the conservative limits of the 95%
confidence intervals of the acceptance ranges, statistically.

Conclusion
It was confirmed that a novel method based on BS resam-

pling and SOM was applicable for evaluating the precision of
a nonlinear response surface. Thus, the novel method de-
scribed in this study was considered to be useful as a sci-
ence-based rationale of the design space.
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