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81. On the Theory of Chromatography.
By JosEpn WEIss.

A general theory for the formation of a chromatogram in an absorption column from a single substance and
the process of development by a solvent is given and discussed for several adsorption isotherms {Langmuir,
Freundlich, linear isotherm).

The structure and shape of the band and the process of elution are discussed in general for the case of complete
equilibrium between the solution and the adsorbed state, but some reference is also made to non-equilibrium
conditions. i

In the following paper an attempt is made to correlate the theory with experimental results.

THE method of chromatographic adsorption analysis, discovered by Tswett, is now used mainly for the separation
of organic compounds. In its simplest form, a mixture of the compounds in a suitable solvent is allowed to run
through a vertical column of a suitable, finely powdered adsorbent. The mixture is separated into a series of
bands (chromatogram), which are obvious in the case of coloured substances, and often show fluorescence in
U.V. light if they are normally colourless. The separation of these bands can be completed by the process of
‘“ development ' : after the original chromatogram is formed, one passes a suitable solvent through the column,
thereby washing the bands down at different rates and thus effecting their separation. By cutting the column,
the bands can be extracted separately, or they can be removed by fractional desorption (elution) with suitable
solvents.

It is obvious that for any of these processes the structure of the bands (e.g., width, concentration) is of great
interest, for on this must depend primarily the possibility of a separation of two or more substances. Only two
published papers deal with the theory of chromatography.* Wilson (. Amer. Chem. Soc., 1940, 62, 1583) gives
the correct differential equation for the case of complete equilibrium between the solution and the adsorbent,
but in the solution of this differential equation and in its physical interpretation he has overlooked various
important points, and he therefore obtains the result that the adsorption band—even after development by a
solvent—remains always of the same width, depending only on the initial concentration of the solution.
Actually, as is well known, the adsorption band broadens out, and also the concentration of the eluate is
not in agreement with this theory. Wilson, who was aware of these difficulties, attributed them to secondary
effects (finite rate of adsorption and desorption, etc.).

The second paper (Martin and Synge, Biockem. J., 1941, 85, 1358) only takes into consideration a linear
adsorption isotherm, in an adaptation of the theory of the fractionating column.

1. The following theoretical treatment is also based on the assumption of practically instantaneous equili-
brium between the solution and the absorbent. The chromatogram of a solution containing a single solute
will be discussed first, for this is an essential preliminary to the understanding of the chromatogram of
mixtures. .

The differential equation governing the adsorption process is given by the conservation condition, viz.,
that the amount of substance disappearing from a solution of volume dv and concentration c—changing to
(¢ — d¢)—in passing through an adsorption column of length dx is equal to — (g¢/dx)dx . dv, and this must appear
in the quantity adsorbed in the length dx from the volume dv, ¢.e., (dg/0v)dv . dx, g being the amount of substance
adsorbed per unit of length of the column. Therefore

— (9¢c/ox)dv . dx = (eqfov)dv . dx . . . . . . . . . (L)
In general,
g = Af(c) (adsorption isotherm) . . . . . . . . . (2)

where A4 is the amount of adsorbent per unit of length of the column, and
oqlov = (8q/ac)(ocjov) = Af'(c)(ocfov) . . . . . . . . . (3)
Finally, from (1), (2), and (3) we obtain
(ocjox) + Af'(c)(eclov)y =0 . . . . . . . . . . @
The solution of this equation is given by
c=¢fv —xAf()} . . . . . . . . . . . (5

where ¢ is an arbitrary function to be determined by the initial conditions. The full mathematical discussion
of equation (5) is given in the Appendix, and we give here only the results there obtained.

II. We consider two operations : (i) When a solution of a given concentration is poured on an adsorption
column, and (ii) when pure solvent of volume v Is poured on the chromatogram formed according to (i).

(i) According to this theory, the adsorption band formed from a solution of initial concentration ¢, and
volume v, is of uniform concentration. The amount adsorbed per unit of length (see equation 2) is given by

do = A f(Co) . . . . . . . . . . . . (6)

* (Note added in proof.) After this paper had gone to press another paper (de Vault, J. Amer. Chem. Soc., 1943, 65,
532) appeared in which, as far as the same problems are treated, the author arrives at substantially the same conclusions
as those reported here.
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The width of the adsorption band extending from ¥ = 0 to ¥ = #, = [ is given by

) voCo/Af(cey =1 . . . . . . . . . . . . (7
(see T'ig. 1) (Appendix, equation A7).
Fic. 1. Fic. 2.
Original adsorption band, extending from Schematical vepresentation of the various stages of develop-
x = 0 to x = x, = 1 (the positive x- wment of a single band by a pure solvent.
axis pointing downward). 0 o 0
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(i) The theory shows that in general the band formed originally goes successively through the stages
shown schematically by Fig. 2 (a), (b), (c), which follow the stage shown by Fig. 1. When pure solvent is poured
on, the band begins to move down and to broaden, ** dissolving ’ from thetopend. The band is then, in general,
represented by two regions (Fig. 2a), viz., the lower region (x,%,), where there is still the original concentration
present as given by equation (6), and the upper region (x,#,) with a variable concentration (¢) which is given,
in general, as a function of (v/x), viz. (see Appendix, equation A16),

vix = Af'(e) . . . . B )]
With increasing v, the region of the original concentration in the lower part gradually dummshes (Fig. 2b) and

eventually disappears (Fig. 2c¢). The various levels are given by the equations (Appendix, equations Al4,
AlS8, A20):

%y = v/(Af(0) e )

%y = v]AL'(cy) . B ¢ )]

%y = vco/Af(co) + v(,co/Af(co) B e 8 8
!

The minimum volume (v,,) of pure solvent to make the lower region of initial concentration just disappear
is given by the condition
G 73O ¢ §-))
Substituting from (10) and (11), we obtain

m = Vo{Cof (Co) [[f(Co) — Cof'(ca))} . . . . . . . . . (13)
I1I. We shall now discuss the above theory for the known adsorption isotherms.
(a) Lineay adsorption isotherm :

g = Af(c) = ac (14)
Af'(0) = Af'(cy) = a (15)
¥ =%, =v/a. (16)
¥y =vla +1 (17)
The width of the band is given by
I =uvyja . (18)

depending only on the initial volume (v,) and independent of the initial concentration (¢). In the development
the band moves down unchanged at the constant rate (per unit of volume) :

#fv=1/a . . . . . . e e o (19)
In practice, the case of the linear adsorption isotherm is of little importance. We have discussed this only

because, for this special case, our results are identical with those of Wilson (loc. cit.).
(b) Langmuir adsorption isotherm :

qg=Af(c) =ac/(L +bc) . . . . . . . . . (20
Af'(cy) = a/(1 —|— 7 L ¢ 2 §)
Af'(0) = a e 23]

X, =vla . O 01 )]
xy = v(l + bc,,)z/a N 67

X =l befatl . . . . . .. .. . (25)
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The equilibrium concentration of the solute in the variable part (x,%,) as derived from equation (8) is given by
Af'(¢) = v/x = a/(1 + bc)?, i.e., L
c=Waxv — Vb . . . . . . o+ . . . . (20

The amount of adsorbed matter (#) in any interval (x,%)) of the variable part is given by

Xu
Affeydy=m . . . . . . . . . . . (27
%
Combining this with (26), we have
m = a(x, — x) /b — 2Vao(Wx, — V)b . . . . . . . (28

If (x,x) represents the whole of the variable interval, i.e., if #, = x,and #; = #,, and if we introduce their values
from (23) and (24) into (28), we obtain

%,
A ffe)dr =wvbee? . . . . . . . . . . . (29
1
We can also calculate the total width of the band when all the adsorbed matter present, m, (i.e., the total

amount), is present in the variable part (i.e., when the lower region has disappeared). )
The lower level x, = x,,can then be obtained from the equations (27) and (28) by introducing the value for

#, from (23) and we obtain ___ _
bmy = (Vaxy, — V) . . . . . . . . . . (30

Vig=Vvja+Abmla . . . . . . . . . . (3]

The maximum equilibrium concentration (c,;) at the front edge of the band corresponding to the level
is then obtained from equations (26) and (31) as '

Copltap¥) = Vmefov . . . . . . . . . . . (32)

v being the volume of the pure solvent that has passed.
(¢) Freundlich adsorption isotherm :

and

g = Af(c) = Be*; 0<a<l (33)
Af'(e) = aBoe=1 . .. . . (34)
A(0) = o ) (35)

X =0 ce . (36)

%y = vjaBce~ 1V | (37)

Xy = v[/Bc,@~V 47, -, (38)

The fact that #; = 0 means that in this case the upper edge of the band never moves completely away from the
top of the column. The equilibrium concentration of the solute in the variable part (¥,%,) is again given by
equation (8) as

¢ = (aBxfp)tla-a . . . . . . . (39

The amount of adsorbed matter in any interval of the variable part can be calculated from (27) and (39).
The total width of the band, when all the adsorbed matter (m,) is present in the variable part of the band,
can be calculated from the equation

EN B4 ~ a)yal(1 ~ ")(1 — a)
A _Off(c)dx = My = pell =@ pUU=a L (40)
and
(1_ zx)(l'“)v“ t-a
= T 3
/‘sz o0 B g ( )

The maximum equilibrium concentration (cy) at the front edge of the band corresponding to the level xy;
is then obtained from equations (39) and (41) :

czf:(l;a)amo/v N € 93]

IV. We will now consider the process of elution of the chromatogram of a single substance. If we add pure
solvent to the original band, then for any volume greater than v, (equation 13) the original band is completely
* washed out "’ (except in the case of the linear isotherm, in which the band remains unchanged). This volume
¥ is given for the two cases discussed above by

(Langmuir) v, >v,/bc, . . . . . . . . . . . (48)
(Freundlich) v, >vea/(1 — o) O (- 23]
If we continue to add pure solvent, eventually the lower edge of the band reaches the bottom of the

adsorption column; until then no solute will have appeared in the eluate.
We shall call the volume of solvent required to shift the adsorption band to the end of the adsorption column
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(of total length #;) the “ threshold ”* volume v, and V, = v; + v,. The volume v, is given by the following
expressions, obtained from (17), (31), and (41) for » = x, and by solving for v = v, :

(Linear isotherm) v; = a(x;, — 1) =an — v, ... . . (4D
(Langmuir) v; = \/ ax, — v/ bmg)> . . . . . . . . (46)

o (Bx )(l - a) ksllu
(FreundhCh) (]_ — a) 1 - a)a "y T—ola mn(l —a)a : ° - N ° (47)

s is the total amount of adsorbent in the column = Ax; oc Bx,.

Equations (46) and (47) are only valid for fully developed bands (i.e. , U>Vy,) ; whereas for partly developed
bands one obtains

v = [mAf(c) el — v . . . . . . . . . . (48)

The mean concentration of the substance in the eluate (¢,) for any volume (v) in excess of v, is given
{corresponding to equation 27) by the expression

vt v

¢, = fley.dv» . . . . . . L L L . (49

_ m A
v v

vt

after substituting for f(c) for the different adsorption isotherms [e.¢., (20) and (26) or (33) and (39)] and using
the relations between v, and #; (equations 31 and 41).

We give here only the result for the Freundlich isotherm, which has been verified by experiment and is
given by _
(Freundlich) ¢, = (m,/v){1 — [v/(v; + v)]*0 =~} . . . . . . (50
From this equation the mean concentration in the eluate after passage of, ¢.g., the volume av, is then given
by the expression
Coarg = (Mofoavg{l — [1/(1 + o)j/@=} . . . . . . (5]

For the (differential) concentration in a small volume Aw, collected after the passage of a volume v, one

obtains .
Am my [< v, >al(1 - a) v, )al(l - a):’
= — = =Y _— L e e 2
= Av T Ao v+ v (v, + v+ Av (52)

V. The concentration of the eluate as given by (49) or (50) is directly related to that of the adsorbed matter
Fic. 3 within the band, and the differential concentration of the

Schematic vepresentation of the shape of the band for cluate gives us dlrec‘Fly a Plcture of the Shf,lpe Of,,th;
the Langmuir adsorption isotherm (1, partly Pand. We shall consider briefly the resultant ** shapes S o
developed ; 2, fully developed). ~ the bands after development with a solvent for the various

~ adsorption isotherms.
& Generally, the amount adsorbed per unit of length of the
s band is given b %, v); and for the variable part (tail) of
@ g Y 9
Q the band :
S
\§ oqlox = Aof(c)Jox = Af'(c)ec/ex = (v/x)(eclox) . (53)
]
N For the Langmuir isotherm this gives
:&i —
S oqlox = (24 ajb)(vM2jx32) (for x>v/a) . (54)
S g=20 (for x<v/a)
0 This is schematically represented in Fig. 3.
leﬂgf 4 of column, x. For the Freundlich isotherm we obtain :
] Byl -a X
a_)q: — %ﬁxm‘“m -9 fore >4 (Fig. 49). . . . . . (55)
1= a)
éq _  (a«B) 1 for« < 3 (Fig. 4b). . . . . . (56)

ox (1 — o)™ — o) x1 = 2a)1 = a)
The actual amount of substance in the variable (tail) part of the band () is given by the expressions

(Langmuir) my = bcgv . . P YA
(Freundlich) mt,—[(l—a)/az}cov B (512

and so for small « it is large, and as « —> 1 it tends to become zero.
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In all the above cases we have a sharp frontal edge and the band ‘‘ dissolves ”’ from the top end. This
result is always obtained on the basis of the ‘‘ equilibrium theory ” if f’(¢) is a decreasing function of ¢ (see
Appendix). Actually, the frontal edge of the band, although often fairly sharp, generally shows some diffuse-
ness, which becomes more marked if there is a strong dependence of the amount adsorbed on the concentration,
e.g., in the case where o approaches unity, as for the linear adsorption isotherm. In this case we might expect
a deviation from the equilibrium theory at the frontal edge where the concentration is a maximum.

Fi1G 4.
Shape of the adsorption band in the case of the Freundlich isotheym (1, partly developed; 2, fully developed).

(8). <% (~=~Forx=5%)

(@). a>%(---for 1)

Quantity adsorbed (q).
Quantity adsorbed(y).

0
Length of column, x. Length of column, ac.
Fi1G. da.—a>}. The broken line vepresents the change in the form if a approaches unity.
F16. 4b.—a<<}. The broken line shows the band for a = §.

A detailed theory of this effect cannot be given without some assumptions about the kinetics of the processes
involved, but the following remarks serve to illustrate this point. In the case of a linear isotherm, the
amount adsorbed (per unit of length) is given by ¢ = ac (equation 14). For higher concentrations, if
equilibrium is not fully reached, the simple isotherm may be replaced by an equation of the form

g = Af(c) = bic + by(bc)? B (1))
Here, b, <Ca, and the equation must have the property that for sufficiently smallc¢, b; —> a, and the second term
disappears. However, at the frontal edge where ¢ is large, we must
apply equation (59). This gives
g = Af'(c) = b, + (2bd %) . . . . (60)
In this case f'(¢) is an increasing function of ¢ and the concentration
in the variable part is given (from the general equation 8) by :

¢ = [(v/¥) — by/2bb® . . . . (61)

FiG. 5.

and
0qlox = — v%[2b,b,%x° ... . (82

The frontal edge of the adsorption band is schematically repre-
sented by Fig. 5.

The theory was worked out at first to explain certain preliminary
results in chromatographic experiments obtained by Weil-Malherbe.
There can be no doubt that the assumption of a complete and XsF
instantaneous equilibrium and.of the absence of all other factors, [engfﬁ of Co/umn, x,
such as ﬁmife rate of adsorption and d'esorptloln, hydrodynam}c Schematical vepresentation of the * diffuse *’
effects, etc., is never completely fulfilled in practice. However, in frontal edge of an adsorption band for
this treatment only a minimum number of assumptions is necessary certain non-equilibvium conditions.
and it is of interest to see how far this simple theory does represent
the experimental facts. This experimental test is communicated in the following paper.

Quantity adsorbed (7).
N

1
1
]
)
!
]
1
A

S

Appendix.
(1) Formation of the Chyomatogvam.—For equation (5) we have initially
cx,0)=0 . . . . . . x>0(‘u=0)}
c0,v) =¢ . . . . . . v>0(x=0) R o)

Hence, denoting v — xA4f'(c) by &, the function ¢(£) is defined by

o ... ...
*‘(5):{%......553--'---%“)
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Now & < 0ifv — xAf'(0) < 0, i.e.,
] v<xdf(0) . . . . . . . . . . . . (A3

and,& > 0if v — xAf'(cy) > 0, 7.e.,
v > xAf'(c,) N ¥ A

We _shall suppose (as is actually the case) that f'(c) is a decreasing function of ¢, i.e., the amount of adsorbed
matter increases with ¢, but the rate of increase decreases with c. Now since f'(c) is decreasing :

f'(cy) < /(0 1
At S eibey | e o - . (aB)

and so there is a range of values of v in which both inequalities (A3) and (A4) are satisfied. We infer that for a
given value of v = v,

-

and

where %, satisfies the inequality
Vo fAE(0) %o S vofAf'(c) . . . . . . . . . . (A6)

To determine x, we must have additional information; this is provided by the fact that the total amount of

matter adsorbed is cgvy, = x,41(c,), ¢.e., the width of the band is

¥y = CoUofAf(c) =1 . . . . . . . . . . . (AT
The solution is, therefore
[ e o a<egup/AL(cy) or v >xAf(cy) Jo }
ol v) = {0 Ce oo x>cgue[Af(cy) or vg<<xAf(cy)/co I
We have also
o [Af(eq) . . . . ve2xAf(c) /e, }
7 v) = {O T 7 5 1 (29 1 7% (A9)

(ii) Development of the Chromatogram with a Solvent.—Since equations (1) and (2) remain true, the solution
is again given by equation (5) with, of course, a different function ¢(£). Let us suppose that initially

Af(cy), .« . . .ox<d L. L de, for O
o, . . . x>

i.e., the adsorption column has a band of uniformly adsorbed matter [go = Af(c,) per unit length] of width [;
¢(0, v) = 0 for all values of v >>0; therefore ¢(v) = 0, v > 0, where $(§) is defined by

90(7" 'U) =

[0 .. ... E>0
$E) =416 . . . . . —IAPO)<E<O . . . . . . (Al0)
0 . . L L L B — 14 (c)
Now £>0 if v — xA41'(0)>0, i.e.,
v > xAf'(0) B -0 8
and £<0 if v — xA41'(cy)<<O0, i.e.,
v<zAf'(C) . . . . . . . . . . . (A12)

but again f'(0)>>f'(¢,), and so there is a gap, xAf'(c) <v<<xA4f'(0), in which the function ¢(£) is not defined.
This is due to our taking a discontinuous function for ¢(£) and can be overcome by taking a $(£) which is
continuous at §£ = 0. From a physical point of view it is obvious that a discontinuous solution is impossible
as there exist in any case certain phenomena (diffusion and convection processes, etc.) which will remove the
discontinuity. For our purposes we can avoid the discontinuity by approximating the function in the region
(23) between the two discontinuous solutions by a linear function, e.g., by the straight line ¢(£) = R 4+ #c,.
‘We then obtain

0 . . . . . . . Ex>0
R 4+ 36y . . . . . —8KESS, Ry = — 64/28

T LI _,ﬁ.é«%_s% L. (A13)
0 . . . . . . . E<—141(0)

We can take the region § as small as we please, so R, can be taken as large as we please. From the first

equality we get
clx, vy = 0ifv>24f°(0) +8 . . . . . . . . . (Al4)

From the second equality
c(x,v) = Rfv — xAf'(e)} + 3¢y . . . . . . . . (Alp)

which is an equation for ¢. Dividing by R, we gét xAf'(¢) = v + ¢o/2R, — ¢[|R,, where R, may be taken as
large as we please. In the limit the terms with R, disappear and we get the solution

Af'(Q) =vofx . . . . . . . . . . . (A16)

where 0<c<{co. As 3 is arbitrary, equation (A16) holds for
Af(c)<lo/xAE'(0) . . . . . . . . . . (A7)
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The third equality gives
¢ = ¢y for Bu oAt (cg) . . . . . . . . . (Al§)

and the fourth equality
c=0forvfx<<f . . . . . . . . . . (Al9)

The lower edge moves down at the same rate as before (as long as there is still some of the original band left),
given by
VB = veo/Af(cy) + H{= 73) Coe e e (A20)
which also defines the value of § introduced in (A18).
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