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81. On the Theory of Chromatography. 
By JOSEPH WEISS. 

A general theory for the formation of a chromatogram in an absorption column from a single substance and 
the process of development by a solvent is given and discussed for several adsorption isotherms (Langmuir, 
Freundlich, linear isotherm). 

The structure and shape of the band and the process of elution are discussed in general for the case of complete 
eauilibrium between the solution and the adsorbed state, but some reference is also made to  non-equilibrium 
cckditions. 

In the following paper an attempt is made to correlate the theory with experimental results. 

THE method of chromatographic adsorption analysis, discovered by Tswett, is now used mainly for the separation 
of organic compounds. In  its simplest form, a mixture of the compounds in a suitable solvent is allowed to  run 
through a vertical column of a suitable, finely powdered adsorbent. The mixture is separated into a series of 
bands (chromatogram), which are obvious in the case of coloured substances, and often show fluorescence in 
U.V. light if they are normally colourless. The separation of these bands can be completed by the process of 
‘‘ development ” : after the original chromatogram is formed, one passes a suitable solvent through the column, 
thereby washing the bands down a t  different rates and thus effecting their separation. By cutting the column, 
the bands can be extracted separately, or they can be removed by fractional desorption (elution) with suitable 
solvents. 

It is obvious that for any of these processes the structure of the bands (e.g., width, concentration) is of great 
interest, for on this must depend primarily the possibility of a separation of two or more substances. Only two 
published papers deal with the theory of chromatography.* Wilson ( J .  Amer. Chem. SOC., 1940,62,1583) gives 
the correct differential equation for the case of complete equilibrium between the solution and the adsorbent, 
but in the solution of this differential equation and in its physical interpretation he has overlooked various 
important points, and he therefore obtains the result that  the adsorption band-even after development by a 
solvent-remains always of the same width, depending only on the initial concentration of the solution. 
Actually, as is well known, the adsorption band broadens out, and also the concentration of the eluate is 
not in agreement with this theory. Wilson, who was aware of these difficulties, attributed them to secondary 
effects (finite rate of adsorption and desorption, etc.). 

The second paper (Martin and Synge, Biochem. J . ,  1941, 35, 1358) only takes into consideration a linear 
adsorption isotherm, in an  adaptation of the theory of the fractionating column. 

I. The following theoretical treatment is also based on the assumption of practically instantaneous equili- 
brium between the solution and the absorbent. The chromatogram of a solution containing a single solute 
will be discussed first, for this is an essential preliminary to the understanding of the chromatogram of 
mixtures. 

The differential equation governing the adsorption process is given by the conservation condition, viz.,  
that  the amount of substance disappearing from a solution of volume dv and concentration c-changing to  
(C - dc)-in passing through an adsorption column of length dx is equal to - (ac/&)dx. dv, and this must appear 
in the quantity adsorbed in the length dx from the volume dv, i.e., (aq/av)dv . dx, q being the amount of substance 
adsorbed per unit of length of the column. Therefore 

- (&/ax)dv. dx = (aq/av)dv. dx 
In  general, 

q = Af(c) (adsorption isotherm) 

where A is the amount of adsorbent per unit of length of the column, and 

a q p v  = (aq/ac) (aclav) = A f’(c) (aclav) 
Finally, from (l) ,  (2),  and (3) we obtain 

(a@%) + Af’(c)(ac/av) = 0 . 
The solution of this equation is given by 

c = +{v - xAf’(c)) . . 

. . . . . . . . .  (1)  

. . . . . . . . .  (2) 

. . . . . . . . .  (3) 

. . . . . . . . .  (4) 

( 5 )  . . . . . . . . .  
where $ is an arbitrary function to be determined by the initial conditions. 
of equation (5) is given in the Appendix, and we give here only the results there obtained. 

column, and (ii) when pure solvent of volume v is poured on the chromatogram formed according to (i). 

volume vo is of uniform concentration. 

The full mathematical discussion 

11. We consider two operations : (i) When a solution of a given concentration is poured on an  adsorption 

(i) According to  this theory, the adsorption band formed from a solution of initial concentration co and 
The amount adsorbed per unit of length (see equation 2) is given by 

. . . . . . . . . . . .  q o  = Af(c,) (6) 

* (Note added in proof.) After this paper had gone to press another paper (de Vault, J .  Amer. Chem. SOC., 1943,65, 
532) appeared in which, as far as the same problems are treated, the author arrives at substantially the same conclusions 
as those reported here. 
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The width of the adsorption band extending from x = 0 to x = xo = I is given by 

(see Fig. 1) (Appendix, equation A7). 
voco/Af(c,) = I . . . . . . . . . . . .  (7) 

FIG. 1. 
Original adsorption band, extending from 

x = 0 to x = xo = 1 (the positive x- 
axis pointing downward). 

0 

FIG. 2. 
Schematical representation of the various stages of develop- 

ment of a single band by a p w e  solvent. 

0 

I 

I (a) (6) (a 
(ii) The theory shows that in general the band formed originally goes successively through the stages 

~h0w1-1 schematically by Fig. 2 (a) ,  (b) ,  (c), which follow the stage shown by Fig. 1. When pure solvent is poured 
on, the band begins to move down and to broaden, “-dissolving ” from the top end. The band is then, in general, 
represented by two regions (Fig. 2a), viz., the lower region ( ~ 2 x 3 ) ~  where there is still the original concentration 
present as given by equation (6), and the upper region (x1x2) with a variable concentration (c) which is given, 
in general, as a function of ( v / x ) ,  viz. (see Appendix, equation A16), 

With increasing v, the region of the original concentration in the lower part gradually diminishes (Fig. 2b) and 
eventually disappears (Fig. 2c). The various levels are given by the equations (Appendix, equations A14, 
A18, A20) : 

. . . . . . . . . . .  v / x  = Af’(c) * (8) 

. . . . . . . . . . . .  x1 = v/(Af’(O) (9) 
x2 = v/Af’(c,) - (10) 
x3 = vco/Af(co) + v&,/Af(co) . . . . . . . . .  (11) 

. . . . . . . . . . . .  - 
1 

The minimum volume (v,) of pure solvent to make the lower region of initial concentration just disappear 
is given by the condition 

Substituting from (10) and (1 l), we obtain 
. . . . . . . . . . . .  x2 = x3 (12) 

(13) 

(14) q = Af(c) = ac 
Af‘(0) = Af’(c,) = a * (15) 

x1 = x2 = v /a  * (16) 
x3 = v / a  + Z . . . . . . . . . . . .  (17) 

1 = vo/a (18) 

. . . . . . . . .  v, = vo(cof’(co)/[f(co) - c,f’(c,)]) 
111. We shall now discuss the above theory for the known adsorption isotherms. 

(a) Linear adsorption isotherm : 
. . . . . . . . . . .  
. . . . . . . . . .  

. . . . . . . . . . .  
The width of the band is given by 

depending only on the initial volume (vo) and independent of the initial concentration (co). 
the band moves down unchanged a t  the constant rate (per unit of volume) : 

. . . . . . . . . . . .  
In  the development, 

x/v = l / a  . . . . . . . . . . . .  (19) 
In practice, the case of the linear adsorption isotherm is of little importance. 

because, for this special case, our results are identical with those of Wilson (Zoc. cit.).  
(b) Langmuir adsorption isodherm : 

We have discussed this only 

* (20) q = Af(c) = ac/(l + be) 
Af’(co) = a / ( l  + bc0)2 * (21) 
Af’(0) = a (22) 

x1 = v/a (23) 
x2 = v(1 + bc,)2/a (24) 
x3 = v ( 1  + bc,)/a + Z . . . . . . . . . .  (25) 

. . . . . . . .  
. . . . . . . . . .  

. . . . . . . . . . . . . .  

. . . . . . . . . . . . .  
. . . . . . . . . . .  
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The equilibrium concentration of the solute in the variable part (x1x2) as derived from equation (8) is given by 
Af'(c) = v / x  = a / ( l  + bc)2, i.e., 

The amount of adsorbed matter (m) in any interval (xuxl) of the variable part is given by 

c.= (4- - l ) / b  . . . . . . . . . . . .  (26)  

xu 
AJf(c)dx = m . . . . . . . . . .  (27) 

(28) 

X1 

Combining this with (26), we have 

m = a(xu - x J / b  - 2&(d< - .\/<)/b . . . . . .  
If (x,xl) represents the whole of the variable interval, i.e., if xu = x2 and xz = xl, and if we introduce their values 
from (23) and (24) into (28), we obtain 

x2 

Aff(c)dx = V ~ C :  . . . . . . . . . . .  (29) 
Xl 

We can also calculate the total width of the band when all the adsorbed matter present, mo (i.e.,  the total 
amount), is present in the variable part (i.e.,  when the lower region has disappeared). 

The lower level xu = xZf can then be obtained from the equations (27) and (28) by introducing the value for 
x1 from (23) and we obtain 

and 
bun, = (l/Zf - 43' 
qGf= dq + l/bm,/la . . . . . . . . . .  

. . . . . . . . . .  ( 30) 

(31) 

The maximum equilibrium concentration (cV) at  the front edge of the band corresponding to the level x2f 
is then obtained from equations (26) and (31) as 

. . . . . . . . . . .  c2f(x2jJJ) = +Zo/bv (32) 
v being the volume of the pure solvent that has passed. 

(c) Freundlich adsorption isotherm : 
. . . . . . . .  4 = Af(c) = Bca; O<a<l (33) 

Af'(co) = a B C p  - 1) . . . . . . . . . . . . .  (34) 
Af'(0) = 00 (35) 

x1 = 0 (36) 
x2 = vJRBc,'" - ' )  . . . . . . . . . . . .  (37) 
x3 = V/BCo(a  - 1)  +- I - (38) 

. . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  

. . . . . . . . . . .  
The fact that x1 = 0 means that in this case the upper edge of the band never moves completely away from the 
top of the column. The equilibrium concentration of the solute in the variable part (x Ixz)  is again given by 
equation (8) as 

. . . . . . . . . . .  c = ( a B x / ~ ) l " l -  a) (39) 

The amount of adsorbed matter in any interval of the variable part can be calculated from (27) and (39). 
The total width of the band, when all the adsorbed matter (mo) is present in the variable part of the band, 

can be calculated from the equation 
p / ( 1  - a ) p / ( l  - a ) ( l  - % a)x21 ' (1 -a)  

0 
. . . . . .  (40) A ff(c)dx = mo = va/(l  - a )  

and 
(1 - - 0) na - yno(l - a )  . . . . . . . . .  

aa B X2f = 

The maximum equilibrium concentration (cZf) at  the front edge of the band corresponding to the level xzf 
is then obtained from equations (39) and (41) : 

. . . . . . . . . . .  c z j =  (1 - a)am0/zl (42) 
IV. We will now consider the process of elution of the chromatogram of a single substance. If we add pure 

solvent to the original band, then for any volume greater than v, (equation 13) the original band is completely 
" washed out " (except in the case of the linear isotherm, in which the band remains unchanged). This volume 
Vm is given for the two cases discussed above by 

. . . . . . . . . . .  (43) 
(Freundlich) v,>v,a/(l - a) (44) 
(Langmuir) vm>vo/bco 

. . . . . . . . .  
If we continue to add pure solvent, eventually the lower edge of the band reaches the bottom of the 

We shall call the volume of solvent required to shift the adsorption band to the end of the adsorption column 
adsorption column ; until then no solute will have appeared in the eluate. 
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(of total length x,) the " threshold " volume vt, and V, = vt + vo. 
expressions, obtained from (17), (31), and (41) for x = x, and by solving for v = vt : 

The volume vt is given by the following 

. . . .  - (45) 
(46) 

(Linear isotherm) v, = a(xt - I) = axt - v o  
. . . . . . . .  (Langmuir) vt = (4%- l/b.tno)2 

s is the total amount of adsorbent in the column = Axt  cc Bx,. 

bands one obtains 
Equations (46) and (47) are only valid for fully developed bands (i.e., v>vm) ; whereas for partly developed 

. . . . . . . . . .  vt' = [x,Af(c,)/c,] - 110 (48) 

The mean concentration of the substance in the eluate (C,) for any volume (v) in excess of vt is given 
[corresponding to equation 2 7) by the expression 

ut + 1' 
- m A  
c = - = -  I f(c) . d x  . . . . . . .  e v v  . . .  (49) 

Z t  

after substituting for f(c) for the different adsorption isotherms [e.g., (20) and (26) or (33) and (39)] and using 
the relations between vt and xt (equations 31 and 41). 

We give here only; the result for the Freundlich isotherm, which has been verified by experiment and is 
given by 

. . . . . . .  (Freundlich) 2., = (mo/v){l - [vt/(vt + v)la/(l  a)> ( 50) 

From this equation the mean concentration in the eluate after passage of, e.g., the volume avt is then given 
by the expression - 

. . . . . . . .  Ce(a , i )  = (mo/aut){l - [1/(1 + a'> (51) 
- 

For the (differential) concentration in a small volume Av, collected after the passage of a volume v, one 
obtains 

. . . . . .  (52 )  
vt A m  a / ( l  - a )  

c = - = m ,  Av Av[($> -(v,+ v + Av 
V. The concentration of the eluate asgiven by (49) or (50) is directly related to that of the adsorbed matter 

within the band, and the differential concentration of the 

We shall consider briefly the resultant " shapes " of 
the bands after development with a solvent for the various 

FIG. 3. 
Schematic representation of the shape o f t h e  band for gives us a picture Of the ' I  shape " Of the 

the ~~~~~~i~ adsorption isothernz (1,  partly band. 
developed ; 2, fiklly developed). 

adsorption isotherms. 
Generally, the amount adsorbed per unit of length of the 

band is given by q(x, v); and for the variable part (tail) of 
the band : 

0 x, x; 
Length o f  co/umn,x. 

This is schematically represented in Fig. 3. 
For the Freundlich isotherm we obtain : 

The actual amount of substance in the variable (tail) part of the band (m,J is given by the expressions 

. . . . . . . . . . . .  (Langmuir) mt2 = bcO2v (57) 
(58)  . . . . . . . . .  (Freundlich) mtl = [(l - cc)/a2]cov 

and so for small a it is large, and as cc -+ 1 it tends to become zero. 
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4 = Af'(c) = b ,  + (2b2b12)c . . . . (60) $ 
2 
% 

In  this case f'(c) is an increasing function of c and the concentration 
in the variable part is given (from the general equation 8) by : 

8 
(61) r3 c = [ (v /x )  - b1]/2b2b12 . . . . 

and 2 
aq/ax = - v2/2b2b?x3 . . . . (62) 

The frontal edge of the adsorption band is schematically repre- 3 
The theory was worked out a t  first to explain certain preliminary 2 

results in chromatographic experiments obtained by Weil-Malherbe. 

sented by Fig. 5. c 

In all the above cases we have a sharp frontal edge and the band " dissolves '' from the top end. This 
result is always obtained on the basis of the " equilibrium theory " if f'(c) is a decreasing function of c (see 
Appendix). Actually, the frontal edge of the band, although often fairly sharp, generally shows some diffuse- 
ness, which becomes more marked if there is a strong dependence of the amount adsorbed on the concentration, 
e.g., in the case where cc approaches unity, as for the linear adsorption isotherm. In  this case we might expect 
a deviation from the equilibrium theory at  the frontal edge where the concentration is a maximum. 

-Qo ----_____ 

FIG 4. 
Shape of the adsorption band i.iz the case of the Freundlich isotherm (1, partly developed; 2, fu l ly  developed). 

0 
L ength of co/umn, x. 

$1 (6). a c $ (---for%=$) 
'p 

0 
Length o f  co/umn> x. 

FIG. 4a.-a>&. 
FIG. 4b.-a<3. 

T h e  broken line represents the change in the f o r m  i f  a approaches uni ty .  
T h e  broken line shows the band for  a = 9. 

Appendix. 

(1) Formation of the Chromatogram.-For equation (5 )  we have initially 

I (Al)  
c(x, 0) = 0 . . . . . . x > O ( v = O )  
c ( O , v ) = c ,  . . . . . . v > O ( x = O )  * - - * - - 

Hence, denoting v - xAf'(c) by E, the function $(c) is defined by 
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Now E < 0 if v - xAf’(0) < 0, i.e., 

and,E > 0 if v - xAf’(c,) > 0, i.e., 
. . . . . . . . . . .  v < xAf’(0) * (A3) 

(A4) v > xAf’(c,) . . . . . . . . . . .  
We shall suppose (as is actually th? case) that f’(c) is a decreasing function of c, i.e., the amount of adsorbed 

matter increases with c, but the rate of increase decreases with c. Now since f’(c) is decreasing : 

f’(c0) < f’(0) ’ 
xAf’(0) > xAf’(co) 1 - . 0 .  * ’ - - 

and so there is a range of values of v in which both inequalities (A3) and (A4) are satisfied. 
given value of v = vo 

and 
where x, satisfies the inequality 

To determine x, we must have additional information ; this is provided by the fact that the total amount of 
matter adsorbed is cove = xoAf(cO), i.e., the width of the band is 

The solution is, therefore 

We infer that for a 

c = c, for x < x, 
c = 0 for x > xo 

* (A6) v,/Af’(O) < xo < v,/Af’(c,) . . . . . . . . .  

. . . . . . . . . . .  (A71 x, = c,v,/Af(co) = 1 

. . . . .  
c(x ,  v) = (2 . . . .  x>covo/Af(c0) x<covo/A f(c0) or v,<xAf(c,)/c, or vo>xA f k o )  /Go } . . . .  

We have also 

(ii) Developwent of the Chromatogram with a Solvent.-Since equations (1) and (2) remain true, the solution 
is again given by equation (5) with, of course, a different function #). Let us suppose that initially 

. . . . .  x<l . .  
qo(x, v) = {f,f‘e.o) . . . .  x>l  

. i.e., for O<x+? 

i.e., the adsorption column has a band of uniformly adsorbed matter [qo = Af(c,) per unit length] of width I ;  
c(0,  v) = 0 for all values of v > O ;  therefore +(v) = 0, v > 0, where +(e) is defined by 

(0 . . . . .  t>o 
+(E) = 1; . . . . .  -ZAf’(O)CE<O . . . . . .  

. . . . .  4 <  - lAf’(c,) 
Now < > O  if v - xAf’(O)>O, i.e., 

and [ < O  i f  v - xAf’(c,)<O, i.e., 

but again f’(O)>f’(c,), and so there is a gap, xAf’(c,)<v<xAf’(O), in which the function $(E) is not defined. 
This is due to our taking a discontinuous function for $(E) and can be overcome by taking a $(E)  which is 
continuous at  E, = 0. From a physical point of view it is obvious that a discontinuous solution is impossible 
as there exist in any case certain phenomena (diffusion and convection processes, etc.) which will remove the 
discontinuity. For our purposes we can avoid the discontinuity by approximating the function in the region 
(23) between €he two discontinuous solutions by a linear function, e.g., by the straight line +(E,) = ROE + ic,. 
We then obtain 

. . . . . . . . . .  v > xAf’(0) ( A l l )  

v<xAf’(c,) (A121 . . . . . . . . . . .  

. . . . . . .  
. . . . .  . . .  (A13) . . . . . . .  

. . . . . . .  

(A14) 

c(x, v) = R,{v - xAf’(c)} + *co . . . . . . . .  (A151 

i 0 { > S > O  

0 E <  - ZAf’(0) 

R O E  + -S<c<S, Ro = - c0/26 
+(E) = co -ZAf‘(c,)<E< - 6 

c(x, v) = 0 if v>xAf’(O) + 6 . . . . . . . . . .  

i 
We can take the region 6 as small as we please, so B, can be taken as large as we please. From the first 

equality we get 

From the second equality 

which is an equation for c. 
large as we please. 

Dividing by 8,. we get xAf’(c) = v -I- co/2R, - c/R,, where R, may be taken as 
In the limit the terms with R, disappear and we get the solution 

. . . . . . . . . . .  Af’(c) = v / x  ( A W  

where O<c<c,. As 6 is arbi t ra j ,  equation (A16) holds for 
A f’ (c,)<v /x<A f‘(0) . . . . . . . . . .  (A 17) 
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The third equality gives 

and the fourth equality 
c = ca for P<v/x<Af’(c,) . . . . . . . . .  

c = 0 for v/x<p . . . . . . . . . .  W 9 )  

The lower edge moves down at  the same rate as before (as long as there is still some of the original band left), 
given by 

which also defines the value of p introduced in (A18). 

Professor G. R. Clemo for his interest in this work. 

v / P  = vca/Af(ca) + I(= x3) . . . . . . . .  (A20) 
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