Isolation of a cis-1,2-Divinylcyclopropane

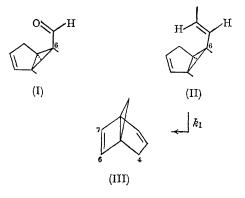
By J. M. BROWN

(Department of Chemistry, School of General Studies, Australian National University, Canberra)

ATTEMPTS^{1,2} which have been made to prepare cis-1,2-divinylcyclopropane are considered to have led to its transient formation and subsequent rapid rearrangement to cyclohepta-1,4-diene. The reaction of methylene triphenylphosphorane with bicyclo[3,1,0]hex-2-ene-cis-6-carboxyaldehyde,(I)³, produced bicyclo [3,2,1] octadiene, (III)⁴, presumably by Cope rearrangement of cis-6-vinylbicyclo-[3,1,0]hex-2-ene (II). Thus, apart from the studies on degenerate systems initiated by Doering and Roth,² no examples of *cis*-divinylcyclopropanes with the inherent potential for Cope rearrangement have been reported.

In utilising the reported synthesis of (III) to prepare its 4,4-dideutero-analogue, it was noted that the infrared spectrum of the crude product contained a C-D stretching vibration near 2300 cm.⁻¹, which disappeared on distillation to be replaced by a vibration centred at 2100 cm.⁻¹. It was felt that (II) was probably being observed as an intermediate, and milder conditions of synthesis were sought. In the original preparation the Wittig complex was decomposed in refluxing tetrahydrofuran; this decomposition is known to be accelerated by using polar solvents⁵ and heavier alkali-metal ions.⁶ Consequently, the reaction of (I) with methylenetriphenylphosphorane, formed with potassium t-butoxide, was carried out in dimethyl sulphoxide at 10° for 10 min., and the product extracted with cold pentane which was

¹ E. Vogel, K. H. Ott, and K. Gajek, Annalen, 1961, 644, 172.


² W. von E. Doering and W. R. Roth, Tetrahedron, 1963, 19, 715.

- ⁴ J. Meinwald, S. S. Labana, and M. S. Chadha, J. Amer. Chem. Soc., 1963, 85, 582.
 ⁴ C. Cupas, W. E. Watts, and P. von R. Schleyer, Tetrahedron Letters, 1964, 2505.
 ⁵ (a) C. F. Hauser et al., J. Org. Chem., 1963, 28, 372. (b) R. Greenwald, M. Chaykovsky, and E. J. Corey, ibid., 1963, 28, 1128.

⁶ M. Schlosser and K. F. Christmann, Angew. Chem. Internat. Ed., 1964, 3, 636.

removed at -15° . The residual oil was distilled bulb-to-bulb in vacuo at 0° three times and stored at -80° . Its properties were uniquely in accordance with structure (II), with satisfactory combustion analysis and prominent infrared absorption (film) at 900, 1630, and 3090 cm.-1. The n.m.r. spectrum in carbon tetrachloride showed two areas of absorption in integral ratio 5:5.4, with olefinic protons between $\tau 4.2$ and 5.2, containing a strong singlet at τ 4.39, and paraffinic protons between τ 7.2 and 8.7. When the solution was kept at 33°, the characteristic quartets of the 6- and 7-protons of (III) became evident; after 36 hr. at this temperature the spectrum was that of (III) alone. The ultraviolet spectrum of (II) in 95% ethanol showed strong end-absorption with an apparent peak at 208 m μ ($\epsilon = 8000$). Significantly, this decayed appreciably on keeping the solution overnight at 40°. Ozonolysis of (II) in methylene chloride at 0°, and Raney nickel treatment of the ozonide produced, inter al., formaldehyde, identified as its 2,4-dinitrophenylhydrazone.

The kinetics of conversion of (II) into (III) were followed,* monitoring portions by gas-liquid chromatography on a two-foot $\beta\beta'$ -dioxopropionitrile column at 25°. In 20–25% cyclohexane ($\epsilon = 2$) solution, k_1 (325·6° K) = 191 × 10⁻⁶ sec.⁻¹, k_1 (313·1° K) = 46·5 × 10⁶ sec.⁻¹, and k_1 (300·6° K) = 9·92 × 10⁻⁶ sec.⁻¹, giving rise to the rate expression $k_1 = 10^{11.67} \exp(-22,900/\mathbf{RT})$, from which $\Delta H_{313} = 22,300$ cal.mole⁻¹ and $\Delta S^{\dagger}_{313} = -1.8$. In n-butanol ($\epsilon = 17$), k_1 (300.6°) = 9.75 $\times 10^{-6}$ sec.⁻¹ and k_1 (325.6°) = 186 $\times 10^{-6}$ sec.⁻¹. This suggests that here, as in other 'no-mechanism' reactions, the extents of charge-separation and specific solvation of the transition-state are minimal.

There seems to be no *a priori* reason for enormous difference between the rate of Cope rearrangement of (II) and that of *cis*-1,2-divinylcyclopropane. The stability of (II) (half-life of 1 day at 25°) suggests that the parent compound might well be isolable with appropriate synthetic conditions.

(Received, April 12th, 1965.)

* Two runs were made for each determination; good first-order kinetics were observed through three half-lives.