Reactions of Benzenesulphonylcarbene

By R. A. ABRAMOVITCH and J. ROY

(Department of Chemistry, University of Saskatchewan, Saskatoon, Canada)

The preparation of p-methoxyphenylsulphonylcarbene and its addition to isobutene has recently been reported.¹ We describe the composition of some of the more complex products resulting

¹ A. M. van Leusen, R. J. Mulder, and J. Strating, Tetrahedron Letters, 1964, 543.

from the photolysis or thermolysis of benzenesulphonyldiazomethane² PhSO, CH·N, (I) in various solvents.

The thermal decomposition of (I) in benzene gave an appreciable quantity of low-boiling material together with trans-1,2-dibenzenesulphonylethylene (II) $Ph \cdot SO_{\bullet} \cdot CH = CH \cdot SO_{\bullet} \cdot Ph$ (23%),³ benzyl phenyl sulphone⁴ $(1\cdot 2\%)$, and a compound (III), C₁₃H₁₂O₅S₂, m.p. 96-96.5° (3.0%). Compound (III) exhibited a 10H-multiplet centred at τ 2.41 and a 2H-singlet at τ 5.06. The n.m.r., infrared, and mass spectra of (III) establish its structure as $C_6H_5 \cdot SO_2 \cdot CH_2 \cdot SO_3 \cdot C_6H_5$. This ester must be formed by an abstraction of oxygen by $C_6H_5SO_2$ from a benzenesulphonyl derivative to give C_6H_5 ·SO₃, followed by coupling with $C_6H_5 \cdot SO_2 \cdot CH_2 \cdot$ (arising, presumably from $C_6H_5 \cdot SO_2 \cdot CH_2 \cdot + RH \rightarrow C_6H_5 \cdot SO_2 \cdot CH_2 \cdot + R \cdot$). Thus, (III) is also formed (3.1%), together with (II) (28%) and the phenyl sulphone (1.2%). when the thermolysis is carried out in degassed solvent in the absence of atmospheric oxygen. Almost no (II) is obtained in the photolysis of (I) in benzene; benzyl phenyl sulphone is again formed (1.1%) but the yield of (III) increases markedly (23.0%).

That (II) and (III) probably arise from a carbene precursor was confirmed by trapping the latter before it could undergo the slower reactions leading to these compounds. Photolysis of (I) in cyclohexene gave the 7-benzenesulphonylnorcaranes⁵ (48.2%); no (II) or (III) could be

- ² A. M. van Leusen and J. Strating, Rec. Trav. chim., 1965, 84, 151.
- ³ R. Adams and A. Ferretti, J. Amer. Chem. Soc., 1959, 81, 4927.
- ⁴ R. L. Shriner, H. C. Struck, and W. J. Jorison, J. Amer. Chem. Soc., 1930, 52, 2060.
 ⁵ U. Schöllkopf, G. J. Lehmann, J. Paust, and H.-D. Härtl, Chem. Ber., 1964, 97, 1527.
 ⁶ M. F. Sloan, D. S. Breslow, and W. B. Renfrow, Tetrahedron Letters, 1964, 2905.

- ⁷ R. A. Abramovitch, J. Roy, and V. Uma, Canad. J. Chem., in the press.

detected by gas chromatography. The exo- (IV) to endo- (V) ratio was 68:32, which is to be contrasted with an exo-/endo- ratio of $1:1\cdot3$ reported⁵ (and confirmed here) for the addition of benzenesulphinylcarbene to cyclohexene. The same ratio (IV)/(V) was obtained on thermolysis of (I) in cyclohexene but the yield of product was slightly higher (53.1%); again, no (II) or (III) was detected.

Thermal decomposition of (I) in cyclohexane in the presence of air gave the insertion product, cyclohexylmethyl phenyl sulphone (VI), m.p. $53-54^{\circ}$ (28.9%), together with (III) (5.8%). In the absence of oxygen, (VI) (43.5%) and (III) (6.9%) were again obtained, while photolysis gave only 12.1% of (VI) and, as with benzene, the yield of (III) increased greatly (34.6%). It appears, therefore, that while sulphonylimido-intermediates⁶ and sulphonylcarbenes undergo C-H insertions readily, only the former' give appreciable quantities of aromatic substitution products.

(Received, October 1st, 1965; Com. 621.)