Number 5, 1965 85

Reactions of Fluorinated Olefins with Metal Carbonyl Anions

By P. W. JOLLY and F. G. A. STONE

(Department of Inorganic Chemistry, The University, Bristol, 8)

A CHARACTERISTIC reaction of highly fluorinated aromatic and olefinic hydrocarbons is the replacement of one or more of their fluorine atoms by nucleophiles, for example methyl-lithium or

sodium methoxide.¹ We now report that several metal carbonyl anions undergo similar reactions with a variety of fluoro-olefins.

In tetrahydrofuran the sodium salts of the

¹ D. R. Sayers, R. Stephens, and J. C. Tatlow, J., 1964, 3035; Endeavour, 1963, 22, 89 and references cited therein.

anions $\mathrm{Mn(CO)_5^-}$ and $\mathrm{Re(CO)_5^-}$ readily replace fluorine atoms, in perfluoro-cyclobutene or -hexene to form (60—90% yield) organometallic compounds of structures (I) and (II) [established by elemental analysis, molecular weight measurement, and i.r. and $^{19}\mathrm{F}$ n.m.r. spectroscopy].

$$F_2$$
 F_2
 F_2
 F_2
 F_2
 F_3
 F_4
 F_2
 F_4
 F_5
 F_5
 F_6
 F_7
 F_8
 F_8

The anion [Mn(CO)₄PPh₃]⁻ reacts with perfluorocyclohexene to form predominantly trans-C₆F₉Mn-(CO)₄PPh₃ (in the metal carbonyl stretching region of the infrared spectrum the complex shows only one strong absorption at 1995 cm.⁻¹). However, reaction of the pentacarbonylmanganese complex (II) with triphenyhosplphine yields a

mixture of cis- and trans-C₆F₉Mn(CO)₄PPh₃, the cis-isomer showing strong carbonyl absorptions at 2090, 2015, 2008, and 1965 cm.⁻¹.

It has been reported that whereas hexafluorobenzene and π - $C_5H_5Fe(CO)_2^-$ react to form π - $C_5H_5Fe(CO)_2C_6F_5$, several other carbonyl anions, including $Mn(CO)_5^-$, do not react with hexafluorobenzene. In contrast to the result with the pentacarbonylmanganese anion, we find that the new compound $C_6F_5Re(CO)_5$ can be obtained (15% yield) by treating hexafluorobenzene with the sodium salt of pentacarbonylrhenium(-I).

We have also prepared the first trifluorovinyl transition-metal complexes $CF_2: CF \cdot Re(CO)_5$ and $CF_2: CF \cdot Fe(CO)_2\pi \cdot C_5H_5$, by treating the carbonyl anions in tetrahydrofuran with chlorotrifluoroethylene. Interestingly, the reaction between $Mn(CO)_5^-$ and chlorotrifluoroethylene in the same ether affords the previously described³ compound $HCFCl \cdot CF_2 \cdot Mn(CO)_5$, rather than $CF_2: CF \cdot Mn(CO)_5$. However, it has been possible to prepare several trifluorovinyl transition-metal complexes by treating the appropriate metal halide complexes with perfluorovinylmagnesium bromide.⁴

(Received, February 10th, 1965.)

⁴ D. T. Rosevear and F. G. A. Stone, unpublished observations.

² R. B. King and M. B. Bisnette, J. Organometallic Chem., 1964, 2, 38.

³ J. B. Wilford, P. M. Treichel, and F. G. A. Stone, J. Organometallic Chem., 1964, 2, 119.