NUMBER 9, 1965

The Biosynthesis of Terrein

By A. J. BIRCH, A. CASSERA, and A. R. JONES (Department of Chemistry, University of Manchester)

INSPECTION of the formula (I) of terrein, from *Aspergillus terreus* Thom, suggests that it arises at least partly by the polyketide-fatty acid route.

It is unusual in containing a five-membered ring since polyketides normally contain six-membered ones if any, because they are connected with closures at the β -positions of the original chain.¹ Incorporation of polyketide precursors (see Table) as Schmidt degradations of fatty acids. Counting results have a statistical error of $\pm 3\%$.

Position	[1- ¹⁴ C]acetate r.m.a. labels		[2-¹⁴C]acetate r.m.a. labels		[2-14C]malonate r.m.a. labels	
1	0	0	10.1	1	4.7	1
2	4.6	1	0	0	0	0
3	0	0	9.7	0.96	4.9	1.04
4	5.0	1.08	0	0	0	0
5	0	0	9.5	0.95	4.7	1
6	4.9	1.05	0	0	0.5	0.1
7	5.6	1.18	0.2	0.2	0.45	0.09
8	0	0	10.3	1.02	4.8	1.02

r.m.a. are 10^{-4} . Labels are calculated on a value of 1 for the first in the side-chain.

demonstrates clearly a polyketide origin with the unusual feature of two linked "carboxyl" carbons at the 6,7-positions. Mechanistically, this distribution is probably best explained by contraction of a six-membered precursor. The slight activity of the 6,7-carbons using two precursors could be due to a small degree of randomisation during ring contraction. The degradations were based on the original literature² or were obvious extensions such

(Received, March 25th, 1965.)

¹ A. J. Birch and F. W. Donovan, Austral. J. Chem., 1953, 6, 360; A. J. Birch, Proc. Chem. Soc., 1961, 3. ² P. W. Clutterbuck, H. Raistrick, and F. Reuter, Biochem. J., 1937, 31, 987.