Unusual Magnetic Behaviour of Some Iron(II)-Bis-(1,10-phenanthroline) Complexes

By E. König*

(Mellon Institute, Pittsburgh 13, Pennsylvania)

and K. MADEJA

(Institut für Anorganische Chemie, Universität Greifswald, Germany)

BAKER and BOBONICH have recently reported¹ the observation of an unusual change of the magnetic moment with temperature for the compounds [Fe phen₂(NCS)₂] and [Fe phen₂(NCSe)₂]. On the basis of infrared-spectral investigations, exchange interaction between two iron(II) ions through bridging SCN groups was suggested.

We had previously shown² that, depending upon the strength of the ligand X, two magnetically different types of complexes may be prepared within the series [Fe phen₂ X_2]: (a) high-spin compounds with ${}^{5}T_{2}$ ground states and roomtemperature magnetic moments of 5.0-5.3 B.M., if $X = Cl^-$, Br^- , I^- , N_3^- , OCN⁻, HCO_2^- ; (b) lowspin compounds with ${}^{1}A_{1}$ ground states, diamagnetic, if $X = CN^{-}$, CNO^{-} , NO^{2-} . For ligands X having a field strength close to the cross-over point of ${}^{5}T_{2}$ and ${}^{1}A_{1}$ states, spin-state equilibria might be expected. We report some of our recent results which demonstrate that such equilibria occur for the ligands $X = NCS^-$ and $NCSe^-$. In what follows, the compound [Fe phen, (NCS),] will be used as an example. Similar conclusions were arrived at for [Fe phen₂(NCSe)₂].

Accurate magnetic-susceptibility measurements give a high-temperature limit for the moment of $5\cdot 20 \pm 0.05$ B.M. at 430° K. At $\sim 170^{\circ}$ K, the moment value decreases from $4\cdot 91$ to $1\cdot 70$ B.M. within $\sim 3^{\circ}$ and finally approaches $0\cdot 65 \pm 0\cdot 01$ B.M. at 77° K. The observed variation of magnetic susceptibility with temperature has been compared with plots obtained from the susceptibility expression for two antiferromagnetically interacting centres with spin S = 2. No reasonable fit could be obtained for any value of the exchange integral J, thus ruling out the explanation proposed previously.¹

On the other hand, we derived an expression for the temperature-dependence of the magnetic susceptibility for a ${}^{1}A_{1}$ state separated by ΔE from a thermally accessible ${}^{5}T_{2}$ state. Reasonable agreement with the measured susceptibility is achieved, if $\Delta E \sim 350$ cm.⁻¹ The sudden decrease of susceptibility is not reproduced in complete detail for reasons specified previously.³ The electronic spectra measured at 298 and $\sim 77^{\circ}\kappa$ show major differences as expected for a change in electronic configuration. In the region characteristic for d-d transitions, the room-temperature spectrum shows a band at 11,900 cm.⁻¹ which corresponds to the ${}^{5}T_{2} \rightarrow {}^{5}E$ transition. At 77° κ , the transition ${}^{1}A_{1} \rightarrow {}^{3}T_{1}$ of the low-spin configuration is observed at $\sim 10,400$ cm.⁻¹

Infrared spectra were studied between 4000 and 280 cm.⁻¹ both at 298 and $\sim 105^{\circ}$ K. Several bands assigned to skeletal vibrations of the 1,10-phenanthroline ligand,⁴ the C–N and C–S stretching modes and the NCS bending mode are shifted or changed in intensity on cooling. The changes observed are such as expected from a marked decrease in the ionic radius and an increase in the strength of the metal–ligand bond, both of which are associated with the transition from the high-spin to the low-spin state in iron(II).⁵

The possibility of a phase change has been ruled out by X-ray studies at 298 and $77^{\circ}\kappa$. A change from a *trans*- to *cis*-configuration is extremely unlikely on the basis of infrared spectra. The NCS ligands are N-bonded and *cis*, independent of temperature.

Finally, measurements of the ⁵⁷Fe Mössbauer spectra were used to determine directly the electronic configuration of the iron ion in the two magnetically different states. From a spherical ground state like $A_1(t_2^{6})$, a zero electric field gradient and, therefore, a very small quadruple splitting ΔE_q will be expected. Finite values of ΔE_q , however, are obtained from T_2 terms in absence of octahedral symmetry. Likewise, the spin polarization of core electrons, and thus the isomer shift δ , should increase, for a given ion, with the number of unpaired electrons. For [Fe phen₂(NCS)₂], the following results were obtained:[†]

<i>Т</i> , °к	$\Delta E_{\mathbf{Q}}$, mm./sec.	δ , mm./sec.
293	$2{\cdot}67\pm0{\cdot}03$	0.98 ± 0.03
77	0.34 ± 0.06	0.37 ± 0.05 .

These values may be compared with $\Delta E_{\mathbf{Q}} \sim 0.30$, $\delta = 0.45$ mm./sec. obtained for the low-spin

* Present address: H. C. Ørsted Institute, Chemical Laboratory IV, University of Copenhagen, Denmark.

† The isomer shifts, δ , are measured relative to the mid-point of the spectrum of an iron-foil absorber. A source of ⁵⁷Co diffused into stainless steel has been used.

[Fe phen₃]²⁺ ion⁶ on one hand, and with the results on numerous high-spin iron(II) compounds which yield values of ΔE_{Q} between 1.7 and 3.1 and δ between 0.8 and 1.4 mm./sec. on the other.⁷ Also, high-spin compounds from the series [Fe phen₂X₂] give values of ΔE_0 and δ similar to those obtained for [Fe phen₂(NCS)₂] at 293°K; low-spin compounds give values comparable to those of [Fe phen₂(NCS)₂] at 77°K.

These data provide conclusive evidence for the existence of spin-state equilibria between almost equi-energetic ${}^{5}T_{2}$ and ${}^{1}A_{1}$ states. To our knowledge this is the first report on quintet-singlet equilibria in transition-metal complexes.

(Received, December 31st, 1965; Com. 810.)

¹ W. A. Baker and H. M. Bobonich, Inorg. Chem., 1964, 3, 1184.

² K. Madeja and E. König, J. Inorg. Nuclear Chem., 1963, 25, 377. ³ A. H. Ewald, R. L. Martin, I. G. Ross, and A. H. White, Proc. Roy. Soc., 1964, A, 280, 235.

⁴ A. A. Schilt and R. C. Taylor, J. Inorg. Nuclear Chem., 1959, 9, 211.
⁵ G. Albrecht, J. Tschirmich, and K. Madeja, Z. Chem., 1965, 5, 312.
⁶ L. M. Epstein, J. Chem. Phys., 1964, 40, 435.
⁷ Cf., for example, V. I. Goldanskii, "The Mössbauer Effect and its Applications in Chemistry," Consultants Bureau, 1965, New York, 1964.