
The Biosynthesis of Roemerine, Anonaine, and Mecambrine

By D. H. R. BARTON, D. S. BHAKUNI, G. M. CHAPMAN, and G. W. KIRBY

(Imperial College, London, S.W.7)

ACCORDING to biogenetic theory¹ roemerine (III; R=Me, R'=H) and anonaine (III; R=R'=H) should be derived in Nature from a benzylisoquinoline [as (I)] *via* a dienone [as (II)] and a corresponding dienol. Evidence for the first step is available from studies on the biosynthesis of the dienone crotonosine.² We now report investigations which support the complete biosynthetic sequence.

(\pm)-Coclaurine (I; R=R''=H, R'=Me), (\pm)isococlaurine (I; R=R'=H, R''=Me), (\pm)norcoclaurine (I; R=R'=H, R''=H), and (\pm)-Nmethylcoclaurine (I; R=R'=Me, R''=H), each labelled with tritium ortho to the phenolic hydroxyl groups,³ were fed to flowering Papaver dubium plants.⁴ Since (+)-roemerine (III; R=Me, R'=H), the major alkaloid of this poppy,⁵ was in short supply, the derived radioactive alkaloids were diluted with an excess of (\pm)-roemerine. In agreement with theory, coclaurine, norcoclaurine, and N-methylcoclaurine were all incorporated (see Table) into roemerine. Isococlaurine, which lacks the free phenolic hydroxyl group required for phenol coupling, was not incorporated. (+)-roemerine, was incorporated. Since racemic roemerine was used for dilution, at least one step in biosynthetic sequence must be stereospecific. (\pm)-[N-methyl-¹⁴C]N-Methylnorcoclaurine (I; R= Me, R'=R''=H) was also a good precursor for roemerine. Herzig-Meyer demethylation of the

TABLE

Incorporation* of coclaurine derivatives into roemerine in Papaver dubium 1964 Season

$\begin{array}{cccc} \mbox{Precursor} & (\pm)\mbox{-Coclaurine} & (\pm)\mbox{-Isococlaurine} & (\pm)\mbox{-Norcoclaurine} & (\pm)\mbox{-N-Methylcoclaurine} \\ \mbox{Incorporation} (\%) & 0\mbox{-}062 & 0\mbox{-}00 & 0\mbox{-}34 & 0\mbox{-}48 \end{array}$

(\pm)-Roemerine was used throughout for dilution. A control feeding with (\pm)-[2-¹⁴C]tyrosine gave 0.17% incorporation. Precursors were labelled with tritium *ortho* to phenolic hydroxyl groups.

1965 Season

	N-Methylcoclaurine				
Precursor	(±)-Coclaurine	(±)	(+)	(-)	(\pm) -N-Methyl- norcoclaurine
Labelling pattern Diluting	[8,3′,5′-³H ₃	[NO-Me- ¹⁴ C]	[8,3′,5′-³H ₃]	[8,3′,5′-³H ₃]	[<i>N</i> -Me- ¹⁴ C]
alkaloid Incorporation (%)	(+)-Roemerine 0.15	(+)-Roemerine 0·19	(\pm) -Roemerine 0.11	(\pm) -Roemerine <0.000	(+)-Roemerine 0.10

* Incorporations have been corrected, where appropriate, for loss of tritium from C-8.

In the following season, parallel feedings of (+)-N-methylcoclaurine² (I; R=R'=Me, R''=H) and its antipode were carried out. Only the (+)-enantiomer, which has the same configuration as

radioactive alkaloid showed that all the activity was, as expected, in the N-methyl group. A feeding experiment with (\pm) -N-methylcoclaurine, labelled with ¹⁴C in the N-(81%) and O-methyl (19%) groups, gave an unexpected result. The derived roemerine (relative molar activity 1.00) contained activity in the N-methyl (0.87) and methylenedioxy-(0.11) groups. A significant fraction of the methoxyl activity had therefore been lost during biosynthesis. The cyclisation of an o-methoxyphenol to give a methylenedioxy-group is well known⁶ but has not previously been observed accompanied by demethylation.

Experiments with other plants confirmed and extended these findings. (\pm) -[³H]Coclaurine and (\pm) -[³H]norcoclaurine were good precursors for (-)-anonaine [antipode of (III; R=R'=H)] in Anona reticulata. The incorporations observed, after dilution with (\pm) -anonaine, were, respectively, 0.44 and 0.49% (corrected for loss of tritium from C-8). (\pm) -[³H]-Coclaurine was also incorporated (0.066%), corrected for tritium loss), in *Meconopsis* cambrica, into mecambrine (II).7 Treatment of the radioactive alkaloid with hot hydrochloric acid gave mecambroline (III; R=Me, R'=OH) of the same activity. This phenol, when heated in aqueous alkali, lost all its tritium which must therefore³ have been located, as expected, only at positions 9 and 11. Incorporation (0.03%) of the doubly labelled N-methylcoclaurine (see above) into mecambrine was also observed but insufficient material was available for degradation.

(Received, March 21st, 1966; Com. 176.)

- ¹ D. H. R. Barton and T. Cohen, "Festschrift A. Stoll", Birkhauser, Basel, 1957, p. 117.
- ² L. J. Haynes, K. L. Stuart, D. H. R. Barton, D. S. Bhakuni, and G. W. Kirby, Chem. Comm., 1965, 141.

- ^a See: G. W. Kirby and L. Ogunkoya, J. Chem. Soc., 1965, 6914.
 ^a We thank Dr. Stella Rogers (Queen Elizabeth College) for a generous supply of *Papaver dubium* seeds.
 ^b J. Slavík, Coll. Czech. Chem. Comm., 1964, 29, 1314.
 ^c D. H. R. Barton, R. H. Hesse, and G. W. Kirby, J. Chem. Soc., 1965, 6379; and references there cited; A. R. Battersby, R. J. Francis, E. A. Ruveda, and J. Staunton, Chem. Comm., 1965, 89.
- 7 J. Slavík and L. Slavíková, Coll. Czech. Chem. Comm., 1963, 28, 1720; we thank Dr. J. Slavík for a generous supply of mecambrine, and Dr. E. E. Kemp (Royal Botanic Gardens, Edinburgh) for M. cambrica roots.