
The Biosynthesis of Epistephanine and the Structure of Stebisimine

By D. H. R. BARTON, G. W. KIRBY, and A. WIECHERS

(Imperial College, London, S.W.7)

THE idea¹ that bisbenzylisoquinoline alkaloids might be formed in Nature by the oxidative coupling of coclaurine (I; R=R'=R''=H) derivatives has so far lacked experimental support.² We now report appropriate tracer studies on epistephanine³ (II).

(\pm)-[2-¹⁴C]Tyrosine was incorporated (0·17%) into epistephanine in *Stephania japonica* Miers. Cleavage of the alkaloid with sodium in liquid ammonia gave, after methylation with diazomethane, (\pm)-OO-dimethylcoclaurine (I; R=H, R'=R''=Me) and (-)-*NOO*-trimethylcoclaurine (I; R=R'=R''=Me). These compounds contained, respectively, 50 and 51% of the total activity. In the following season incorporation of (\pm) -[2-¹⁴C]tyrosine (0.084%), (\pm) -[8,3',5'-³H₃]coclaurine⁴ (I; R=R'=R''=H) (0.008%), and (\pm) -[N-methyl-¹⁴C]N-methylcoclaurine (0.050%) was observed. These and later incorporations have been corrected for loss of tritium from positions involved in the oxidative couplings. Herzig-Meyer demethylation of epistephanine, derived from the N-methyl labelled precursor, located 98% of the activity in the N-methyl group.

Both enantiomers of [8,3',5',-3H₃]N-methylcoclaurine were fed, in parallel, to S. japonica. The (-)-enantiomer (I; R=Me, R'=R''=H) was incorporated (0.060%) into epistephanine much more efficiently than its antipode (0.003%). This confirms⁴⁻⁷ the absolute configuration (II) of the alkaloid and shows that racemisation⁸ of the precursor is unimportant in this plant. Degradation of epistephanine derived from (-)-N-methylcoclaurine gave (-)-NOO-trimethylcoclaurine containing 95% of the total activity. The other fragment, (\pm) -OO-dimethylcoclaurine, was inactive. Clearly N-methylcoclaurine provides only half the epistephanine molecule and is not demethylated in the plant to give coclaurine or any other metabolically active derivative.

During work with S. japonica we isolated a new

minor alkaloid, stebisimine, m.p. 233-235°, $C_{36}H_{34}N_2O_6$, m/e 590 (molecular ion and base peak), $[\alpha]_D = 0^\circ$ (c, 1.26 in CHCl₃), ν_{max} (CHCl₃) 1610 cm.-1, λ_{max} (EtOH) 238 and 279 m μ (ϵ , 51,900 and 24,200), and λ_{inf} 308 m μ (ϵ , 12,500). The n.m.r. spectrum (in CDCl₃) showed methoxyl signals at τ 6.04, 6.10, 6.12, and 6.75 and no N-methyl signal. These properties suggested that stebisimine might be N-nor-1,2-dehydroepistephanine and this was

confirmed chemically. Reduction of stebisimine with sodium in liquid ammonia gave, after Nmethylation of the product mixture, (\pm) -armepavine (I; R=R'=Me, R''=H) and the (\pm) -NOdimethylcoclaurine (I; R = R'' = Me, R' = H). Both components were identified by comparison with the synthetic racemates.⁹

(Received, March 21st, 1966; Com. 175.)

¹ F. Faltis and H. Frauendorfer, Ber., 1930, 63, 806.

² Dr. I. R. C. Bick (Univ. of Tasmania) has kindly informed us of his unpublished work on the biosynthesis of berbamine in Atherosperma moschatum. The feeding of (\pm) -[2-14C]tyrosine gave radioactive berbamine containing equal amounts of radioactivity in the two halves of the molecule.

³ M. Tomita and E. Fujita, Pharm. Bull. (Japan), 1954, 2, 378.

⁴ L. J. Haynes, K. L. Stuart, D. H. R. Barton, D. S. Bhakuni, and G. W. Kirby, Chem. Comm., 1965, 141.

⁵ H. Yamaguchi, J. Pharm, Soc. Japan, 1958, 78, 678.
⁶ C. Ferrari and V. Deulofeu, Tetrahedron, 1962, 18, 419.

⁷ M. Tomita and J. Kunimoto, J. Pharm. Soc. Japan, 1962, 82, 734.

⁸ A. R. Battersby, D. M. Foulkes, and R. Binks, J. Chem. Soc., 1965, 3323.

⁹ M. Tomita and H. Yamaguchi, Pharm. Bull. (Japan), 1953, 1, 10; we thank Prof. M. Tomita for several authentic specimens.