The Internuclear Distance in the Te₂ Molecule

By R. P. du Parco and R. F. Barrow (Physical Chemistry Laboratory, Oxford University)

THE short-wavelength region of the visible and near-ultraviolet absorption system of Te₂ consists of bands of the transition $B 0_{u}^{+} - X 0_{u}^{+}$. The region 4000—4115 Å has been photographed on a 3.4 m. Jarrell-Ash spectrograph and 900 lines of ¹³⁰Te₂ have been measured and assigned to seven consecutive bands of the v'' = 0 progression with provisional values of v' from 11 to 17. As in Se₂,¹ the bands consist of single R- and P-branches, with alternate lines, corresponding to odd values of $J^{\prime\prime}$, missing.

The following expression for the rotational term values, cm.-1, has been derived from the ground state combination differences:

With $\mu(^{130}\text{Te}_2) = 64.9739$ a.m.u.² and B = $16.8629/\mu r^2$, $r_0'' = 2.5600 \pm 0.0007$ Å, a little shorter than the value, 2.59 ± 0.02 Å, obtained by electron diffraction.3 Comparison with S2 and Se₂ suggests that the component $\Omega = l_g$ of the ground state may be high enough above 0_g^+ to be neglected in calculations of the thermodynamic functions of gaseous Te₂ at not too high temperatures.

Samples of separated tellurium (130Te) were supplied by the Atomic Energy Research Establishment, Harwell.

(Received, March 22nd, 1966; Com. 181.)

$$F^{\prime\prime}(J) = [0.039602 \pm 0.000022] J(J+1) - [4.04 \pm 0.36] \times 10^{-9} J^2(J+1)^2$$

- ¹G. G. Chandler, R. F. Barrow, and B. Meyer, *Phil. Trans.*, 1966, to be published. ²A. H. Wapstra, *Handbuch der Physik*, 1958, **38** (1), 7.
- ³ L. R. Maxwell and V. M. Molsey, Phys. Rev., 1937, 51, 684.