NUMBER 9, 1966

Mass Spectra of Organo-germanes and -stannanes

By D. B. CHAMBERS, F. GLOCKLING, J. R. C. LIGHT, and M. WESTON (Chemistry Department, The University, Durham)

MASS SPECTRA of tetraorgano-derivatives of Ge, Sn, and Pb have been little studied,¹ due largely to the polyisotopic nature of the metals which often results in overlapping patterns making interpretation difficult except under high resolution. We report on the mass spectra of six organostannanes and a variety of organogermanes at 70ev on an A.E.I. M.S.9 instrument using a resolution better than 1 in 10,000.

In all cases low-intensity molecular ions are observed, for example in the compounds Ph_nSnEt_{4-n} (n = 0-4) the parent-ion decomposition probability is between 0.9864 and 0.9995.

One generalisation which emerges is that the

hydride ion Et_4MH^+ . Ethyl-Ge and -Sn compounds show intense metastable peaks corresponding to ethylene elimination ($R_2M-Et^+ \rightarrow R_2MH^+ + C_2H_4$) and this is the major process leading to metal hydride ions in ethylphenyl compounds (Table 2). The tetraphenyls, Ph₄Sn and Ph₄Ge, differ from the tetraethyls in that the R_2M^+ ion is present and for tin it is the fourth most abundant ion.

TABLE 1

Abundance (of	R_4Sn^+	and	R ₃ Sn+	ions re	elative t	o total	tin-containing ions
-------------	----	-----------	-----	--------------------	---------	-----------	---------	---------------------

Compound	$%R_{4}Sn^{+}$	$% R_{3}Sn^{+}$				
		$Ph_{3}Sn^{+}$	$Ph_{2}EtSn^{+}$	$PhEt_{2}Sn^{+}$	Et ₃ Sn+	
Ph ₄ Sn Ph ₃ SnEt	$0.12 \\ 0.05$	$44 \cdot 45 \\62 \cdot 33$	0.47			
Ph ₃ SnEt	1.35	02.33	50.8	1.14		
PhSnEt ₃ Et ₄ Sn	0·26 0·96			29.63	$0.61 \\ 26.19$	

TABLE 2

Abundance of Sn⁺, SnH⁺, SnH₂⁺, and SnH₃⁺ ions relative to total tin-containing ions.

Compound	%Sn+	$(SnH^{+}+R_{2}SnH^{+})^{*}$	$% RSnH_2 +$	%SnH +
SnPh₄	19.17			
SnPh ₃ Et	13.38	2.02		
$SnPh_2Et_2$	9.66	16.69	0.88	
SnPhEt ₃	9.78	20.19	10.63	
SnEt ₄	4.88	36.27	17.27	1.31

* RSnH+ and R_aSnH+ absent.

most abundant species are those in which Sn or Ge is bonded to three or one other groups (alkyl, aryl, or hydrogen). With tin the heaviest fragments, R_3Sn^+ , are also the most abundant, but decrease with increasing ethyl content (Table 1). With organogermanes R_3Ge^+ is generally the most abundant ion but one exception is Et_4Ge where Et_2GeH^+ , formed by the process, $Et_3Ge^+ \rightarrow$ $Et_2GeH^+ + C_2H_4$, is the most abundant ion.

The mixed ethylphenyl-Sn and -Ge compounds produce two R_3M^+ ions, the most abundant being that containing the most phenyl groups. This is expected because ethyl-containing metal ions have a highly favourable mode of decomposition available (ethylene elimination). Moreover it is also observed that the abundance of, for example, Ph_3M^+ is greater than the sum of the abundances of Ph_2MEt^+ and Ph_2MH^+ in Ph_3MEt . This may indicate that the R_3M^+ ion is planar when charge delocalisation, and hence stability, will increase with the number of phenyl groups. For the compounds Et_nSnPh_{4-n} (n = 0-3), $PhSn^+$ is the second or third most abundant ion, whereas tetraethyltin yields both SnH+ and EtSn⁺ in roughly equal abundance.

The tetraethyls show no Et₂M⁺ ion but only the

One feature common to ethyl–Ge, –Sn, and –Pb compounds is methylene elimination giving ions of low abundance:—

$$\begin{split} \mathrm{Et}_{3}\mathrm{M}^{+} &\rightarrow \mathrm{Et}_{2}\mathrm{M}\mathrm{Me}^{+} + \mathrm{CH}_{2}^{*} \\ \mathrm{Ph}_{2}\mathrm{M}\mathrm{Et}^{+} &\rightarrow \mathrm{Ph}_{2}\mathrm{M}\mathrm{Me}^{+} + \mathrm{CH}_{2}^{*} \end{split}$$

With Et_4Sn , at least, the ion $C_5H_{13}Sn^+$ (*i.e.*, $Et_2SnCH_3^+$) is probably not produced by methyl elimination followed by hydrogen attachment, since its abundance varies linearly with sample pressure. There was also no evidence for a vapourphase rearrangement of Et_4Sn at 200°c before ionisation. The tin compound PhCH₂·CH₂·SnPh₃ also showed two low-abundance peaks ascribable to methylene or ethylene elimination.

$$\begin{array}{c} \operatorname{PhCH}_{2} \cdot \operatorname{CH}_{2} \cdot \operatorname{SnPh}_{3}^{+} \to \operatorname{PhCH}_{2} \cdot \operatorname{SnPh}_{3}^{+} \to \operatorname{Ph}_{4} \operatorname{Sn}^{+} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & -\operatorname{C}_{0} \operatorname{H}_{4} \end{array}$$

The ion $MeGeH_2^+$ may be formed by a similar process.

$$EtGeH_2^+ \rightarrow MeGeH_2^+ + CH_2$$

Phenyl-containing metal ions decompose by diverse routes. Metastable peaks corresponding to biphenyl and benzene elimination are observed.

Phenyl radical elimination is observed with tin,

 $Ph_3Sn^+ \rightarrow Ph_2Sn^+ + Ph^-$

 $PhSn^+ \rightarrow Sn^+ + Ph^-$

Fragmentation of Ph-M⁺ ions is observed at 70ev, but not 20ev.

$$\begin{split} \mathrm{C_6H_5M^+} &\rightarrow \mathrm{C_2H_2} + \mathrm{C_4H_3M^+} \\ \mathrm{C_4H_3M^+} &\rightarrow \mathrm{C_2H_2} + \mathrm{C_2HM^+} \end{split}$$

All phenyltin compounds show the ion C_4HSn^+ whilst the spectra of Ph₄Sn, EtSnPh₃, and Et₂SnPh₂ also produce ions $C_{10}H_7Sn^+$ and $C_8H_5Sn^+$. In contrast to alkyl compounds the arylgermanes Ph₄Ge and (*p*-MeC₆H₄)₄Ge lose one hydrogen atom to give both the singly and doubly charged ions *e.g.*, (Ph₃GeC₆H₄)⁺ and (Ph₃GeC₆H₄)²⁺.

(Received, April 1st, 1966; Com. 211.)

¹ A. Carrick and F. Glockling, J. Chem. Soc. (A), 1966, 623; V. H. Dibeler and F. L. Mohler, J. Res. Nat. Bur, Standards, 1951, 47, 337; E. I. Quinn, V. H. Dibeler, and F. L. Mohler, *ibid.*, 1956, 57, 41; V. H. Dibeler, *ibid.*, 1952, 49, 235.