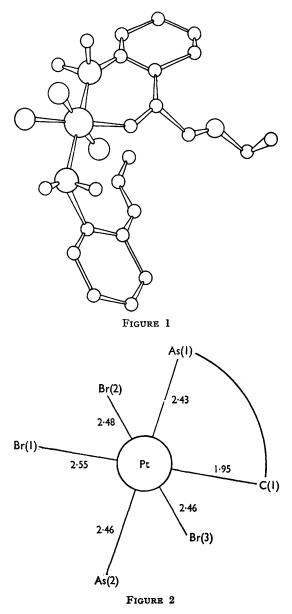

The Formation and Structure of a Platinum(IV) Complex Containing a Metal-Carbon σ -Bond

By M. A. BENNETT, G. J. ERSKINE, J. LEWIS, R. MASON, R. S. NYHOLM, G. B. ROBERTSON, and A. D. C. TOWL


(Departments of Chemistry, University College, London; University of Manchester; and University of Sheffield)

As part of an investigation of the reactivity of coordinated olefinic ligands, we have studied the bromination of the square planar platinum(II) complex $PtBr_2(oA)_2$ (oA=o-allylphenyldimethylarsine) (I). The infrared spectrum of this complex contains a band at 1640 cm.⁻¹ and no band at *ca*. 1500 cm.⁻¹, showing that the double bonds are not co-ordinated to the metal.¹

The product of reaction with 1 mol. of bromine is a yellow monomeric complex PtBr₄(oA)₂, which, on refluxing in ethanol, forms a yellow, monomeric ethoxy-derivative $PtBr_3OEt(oA)_2$. Octahedral tetrabromoplatinum(IV) complexes of the type PtBr₄(arsine)₂ are usually orange-red,² and indeed such compounds are formed by treating 1 mol. of bromine with the complexes $PtBr_2(mA)_2$ and $PtBr_2$ - $(pA)_2$ (mA and pA being the isomeric allylphenyldimethylarsines). Chemical and spectral evidence summarised elsewhere¹ suggests that $PtBr_4(oA)_2$ is not a square planar platinum(II) complex obtained by adding bromine to one double bond of (I), but an octahedral platinum(IV) complex with a metalcarbon σ -bond to one of the allyl side-chains. This suggestion is confirmed by an X-ray analysis of the structure of PtBr₃OEt(oA)₂ whose stereochemistry is shown in Figure 1. Metal-ligand bond lengths are given in Figure 2. The average e.s.d.'s of the Pt-Br and Pt-As lengths are 0.01 Å and of the Pt-C 0.08 Å, and correspond to a leastsquares analysis of 1730 independent reflexions for which the present discrepancy factor, R, is 0.13.

The σ -bonded carbon atom forms part of a sixmembered chelate ring which has a chair conformation. The ethoxymethylene substituent occupies an equatorial position. The platinum-bromine bond *trans* to the σ -bonded carbon is significantly

(6 σ) longer than the two remaining Pt-Br bonds ($\tilde{l} = 2.47$ Å). The rearrangement of the σ -bonded

fragment suggests the possibility of a metalstabilised carbonium ion intermediate in the ready alcoholysis of $PtBr_4(oA)_2$.

The metal-carbon σ -bonds in PtBr₄ $(oA)_2$ and PtBr₃OEt $(oA)_2$ show remarkable chemical stability. For example, bromine adds to the free double bond

of $PtBr_4(oA)_2$ leaving the metal-carbon bond intact; this is broken only by heating with an excess of bromine, giving the usual tetrabromoplatinum(IV) complex of the fully brominated ligand.

(Received, May 10th, 1966; Com. 313.)

¹ The same ligand forms a chelate complex $PtBr_2oA$, in which the double bond is co-ordinated to the metal, and v_{O-C} is 1500 cm.⁻¹; (M. A. Bennett, J. Chatt, G. J. Erskine, J. Lewis, R. F. Long, and R. S. Nyholm, to be published.) ² R. S. Nyholm, *J. Chem. Soc.*, 1950, 843; J. Chatt, *ibid.*, p. 2301.