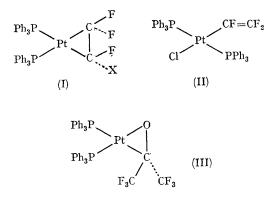
Fluorocarbon Platinum Complexes

By M. GREEN, R. B. L. OSBORN, A. J. REST, and F. G. A. STONE (Department of Inorganic Chemistry, The University, Bristol, 8.)

FLUORO-OLEFIN complexes of rhodium,^{1,2} nickel² and iridium² have recently been described; however, the nature of the bonding is not clearly understood. Herein are described some platinumfluoro-olefin and -hexafluoroacetone complexes. A general reaction occurs between tetrakis(triphenylphosphine)platinum and fluoro-olefins in benzene to afford colourless crystalline complexes of molecular formula $(Ph_3P)_2Pt(fluoro-olefin)$. This reaction is analogous to the reaction between


(Ph₃P)₄Pt with tetracyanoethylene³ or perfluoroalkyl iodides⁴ affording $(Ph_{2}P)_{2}Pt[C_{2}(CN)_{4}]$ or $(Ph_3P)_2Pt(R)_FI$, respectively.

Two important points emerge from the fluorine-19 n.m.r. spectra of the complexes (Ph₃P)₂Pt-(fluoro-olefin). The spectrum of the hexafluoropropene complex (I; $X = CF_3$), m.p. 176-180° decomp., which has four groups of bands centred at 66.5, 107.1, 120.2, and 200 p.p.m.* (with relative integrated intensities of 3:1:1:1), shows a geminal F,F coupling constant of 200 c./sec. This value is of the order observed in saturated fluorocarbon systems suggesting that the perfluoropropene moiety is σ -bonded to the metal. The spectrum of complex (I; X=F), m.p. 218-220° decomp., shows the X-spectrum of an AA'X₂X'₂ system centred at 131.1 p.p.m. $(J(^{195}Pt-^{19}F) = 288 \text{ c./sec.},$ $J(^{31}P^{-19}F) = 39$ c./sec., $J(^{31}P'^{-19}F) = 29$ c./sec., and $J(^{19}\text{F}-^{19}\text{F}') = 2.5$ c./sec.,) which is field and temperature invariant. These observations are consistent with the rigid square-planar σ -bonded three-membered ring system depicted. These complexes do not show any infrared absorption corresponding to a co-ordinated double bond.

The adduct (I; X=Cl), m.p. 206-208° decomp., undergoes a novel molecular rearrangement on heating, just below its melting point, to afford the vinyl complex (II). The structure of (II) is assigned on the basis of its fluorine-19 n.m.r. spectrum,⁵ and by the presence of a strong doublebond absorption at 1734 cm.⁻¹ in its infrared spectrum, which is absent in (I; X=Cl). This new type of rearrangement involves chlorine atom migration on to platinum to give cis-(Ph₃P)₂Pt-(CF:CF₂)Cl, which rearranges to the observed trans-complex.

- * Relative to CCl₃F(0.0 p.p.m.), increasing to high field.
- ¹ M. J. Mays and G. Wilkinson, J. Chem. Soc., 1965, 6629.
- ² R. Cramer and G. W. Parshall, J. Amer. Chem. Soc., 1965, 87, 1392; G. W. Parshall and F. N. Jones, ibid., p. 5356. ³ W. H. Baddley and L. M. Venanzi, *Inorg. Chem.*, 1966, 5, 33. ⁴ D. T. Rosevear and F. G. A. Stone, to be published.
- ⁵ A. J. Rest, D. T. Rosevear and F. G. A. Stone, J. Chem. Soc. (A), 1966, in the press.

As part of a general study of the ability of hexafluoroacetone to act as a ligand towards transition metals we have found that tetrakis-(triphenylphosphine)platinum reacts rapidly with hexafluoroacetone in benzene to give triphenylphosphine, and a crystalline complex (Ph₃P)₂Pt- $[(CF_3)_2CO]$ (III).

The infrared spectrum of the complex showed no bands assignable to a carbonyl group π -bonded onto the metal, and the fluorine-19 spectrum showed a triplet of doublets centred at 67.8 p.p.m. with $J(^{195}Pt-^{19}F) = 71.5 \text{ c./sec.}, J(^{31}P-^{19}F) = 11.6 \text{ c./}$ sec., and $I({}^{31}P'-{}^{19}F) = 1 \text{ c./sec.}$, which supports the illustrated structure (III). This new kind of complex is of interest in that it contains a threemembered ring involving a platinum-to-oxygen σ -bond.

(Received, June 24th, 1966; Com. 429.)