Fucoxanthin and Related Pigments

By R. BONNETT, A. K. MALLAMS, J. L. TEE, and B. C. L. WEEDON (Queen Mary College, London, E.1)

and A. McCormick

(University of Glasgow)

THE structure (I; X = a, Y = k) proposed¹ for fucoxanthin, the characteristic pigment of brown algae, has been confirmed. As reported previously,¹ the products of permanganate oxidation include the dimethylpentaenedial (II), the epoxyaldehyde (III; X = a) and a mixture of allenes. Chromatography of the latter yields the aldehyde (IV; Y = k), $C_{27}H_{36}O_4$,* the aldehyde (V; Y = k), $C_{17}H_{24}O_4$ and the methyl ketone (VI; Y = k), $C_{15}H_{22}O_4$, all of which exhibit the expected spectral (u.v., visible, i.r., n.m.r.) properties. Further support for the structure of (VI; Y = k) is afforded by a study of the fragmentation pattern, and by permanganate oxidation to $\alpha\alpha$ -dimethylsuccinic acid (identified by g.l.c. of the methyl ester). The product reported by Jensen² from the ozonolysis of fucoxanthin benzoate, and for which structure (VI; Y = k) was proposed, is probably a mixture of (V; Y = k) and (VI; Y = k).

Reduction of fucoxanthin with lithium aluminium hydride gives the fucoxanthols^{1,3} and semifucoxanthol.³ Spectral studies show that the former have the structure (I; X = c, Y = j), $C_{40}H_{58}O_5$; semifucoxanthol is presumably the corresponding acetate (I; X = c, Y = k). Oxidation of the fucoxanthols with dichlorodicyanoquinone gives "fucoxanthinol" (I; X = a, Y = j), $C_{40}H_{56}O_5$, m.p. 146—148°, which on acetylation yields a diacetate, $C_{44}H_{60}O_7$, identical with fucoxanthin acetate (I; X = b, Y = k).¹

Treatment of the fucoxanthols with 0.01%

hydrogen chloride in CHCl_3 gives a mixture of (epimeric) furanoid oxides (I; X = d, Y = j), $C_{40}H_{56}O_4$, from which one epimer, "fucochrome", $C_{40}H_{56}O_4$, m.p. 188—190°, crystallises. In its spectral (visible, i.r., n.m.r.) and chromatographic

properties, and fragmentation pattern, the mixture of furanoid oxides closely resembles foliachrome (I; X = d, Y = j), m.p. 148°, and like the latter⁴ yields zeaxanthin (I; X = Y = n), $C_{40}H_{56}O_2$,

m.p. 203-205°, on reduction with lithium aluminium hydride by the method of Cholnoky et al.4,5

Dehydration $(POCl_3/C_5H_5N)$ of fucoxanthin acetate (I; X = b, Y = k)¹ gives the "anhydroacetate" (I; X = b, Y = m), $C_{44}H_{58}O_6$, which is reduced by lithium aluminium hydride to the corresponding "anhydrofucoxanthols" (I; X = c, Y = l), $C_{40}H_{56}O_4$. Treatment of the latter, or the above mixture of furanoid oxides (I; X = d, Y = j), with 0.01% hydrogen chloride in CHCl₃ gives (I; X = d, Y = l), $C_{40}H_{54}O_3$.

During the isolation of fucoxanthin from Fucus vesiculosus by chromatography on alumina, three minor allenic pigments (ν_{max} ca. 1920 cm.⁻¹) were Two of these, "isofucoxanthin", observed. $C_{42}H_{58}O_6$, m.p. 144—146°, and "isofucoxanthinol", $C_{40}H_{56}O_5$, m.p. 207–209°, are formulated as (I; X = e, Y = k) and (I; X = e, Y = j) respectively. Both on reduction with lithium aluminium hydride give a (chromatographically) similar mixture of penta-ols (I; X = h, Y = j). Treatment of the latter with 0.01% hydrogen chloride in CHCl₃ gives a mixture of (epimeric) furanoid oxides (I; X = d, Y = i) with chromatographic and visible-light absorption properties identical

with those of the mixture (I; X = d, Y = j) from the fucoxanthols.

Treatment of isofucoxanthin with benzoyl chloride in pyridine gives a monobenzoate (I; X = g, Y = k), $C_{49}H_{62}O_7$. On reaction with acetic anhydride in pyridine, both isofucoxanthin and isofucoxanthinol give "isofucoxanthin acetate" (I; X = f, Y = k), $C_{44}H_{60}O_7$. Dehydration $(POCl_3/C_5H_5N)$ of the latter gives a pigment with visible-light absorption and chromatographic properties identical with those of the product (I; X = i, Y = m) described below.

Both isofucoxanthin and isofucoxanthinol are probably artefacts since they can be produced by treatment of fucoxanthin with alumina. Under similar conditions fucoxanthin acetate gives "isofucoxanthin acetate" (I; X = f, Y = k), $C_{44}H_{60}O_7$, and the anhydroacetate (I; X = b, Y = m) gives the "iso-anhydroacetate" (I; X = f, Y = m) $C_{44}H_{58}O_6$. Dehydration (POCl₃/C₅H₅N) of the latter gives (I; X = i, Y = m), $C_{44}H_{56}O_5$.

The authors are indebted to Dr. E. S. Waight for some of the mass-spectral data.

(Received, June 6th, 1966; Com. 379.)

* All molecular formulae quoted were determined by mass spectrometry on an MS.9 instrument.

- ¹ R. Bonnett, A. A. Spark, J. L. Tee, and B. C. L. Weedon, Proc. Chem. Soc., 1964, 419.
- ² A. Jensen, Acta Chem. Scand., 1964, 18, 2005.
 ³ A. Jensen, Acta Chem. Scand., 1961, 15, 1605.
- ⁴ L. Čholnoky, K. Györgyfy, J. Szabolcs, E. S. Waight and B. C. L. Weedon, *Chem. Comm.*, 1966, 404.
- ⁵ L. Cholnoky, J. Szabolcs, and Gy. Töth, unpublished results.