
The Effect of Substituents on J_{meta}^{FF} in Fluorobenzenes

By R. J. ABRAHAM, D. B. MACDONALD, and E. S. PEPPER* (Robert Robinson Laboratories, University of Liverpool)

PROTON-PROTON coupling constants in substituted benzenes are characterised by their invariance to the nature of the ring substituents, falling in the ranges¹ 7–9, 2–4, and 0–2 c./sec. for J_{ortho} , J_{meta} , and J_{para} respectively. This independence of substituents has been of great value in elucidating the structures of many aromatic compounds. From the limited amount of data available,¹⁹F-¹H couplings behave similarly. With 19F-19F couplings, although J_{ortho} is relatively constant (-20 to -21 c./sec),² there has been some evidence³ to suggest that J_{meta} varies appreciably and may be of either sign. One of the difficulties encountered is that in the most studied compounds, the pentafluorobenzenes^{4,5} (I) the analysis of the AA'XX'R ¹⁹F spectra does not give the signs of any of the three meta-couplings $(J_{2,4}, J_{2,6}, \text{ and } J_{3,5})$ nor does it distinguish between $J_{2,6}$ and $J_{3,5}$.

We report from an analysis (see Table 1) of the

spectra of nine 2,6-difluorobenzenes (II; X = CO_2H , CO_2Me , $CO\cdotMe$, CN, NH_2 , $NHCO\cdotMe$, NHEt and $OCH_2\cdot CH_2\cdot NH_2$) together with other unpublished⁶ data, that J_{meta} varies between +12 and -10 c./sec. Furthermore, from a computer

analysis of all the available data (some 36 F–F couplings) it is possible to predict these *meta*-couplings to *ca.* 1 c./sec. on the basis of additive substituent contributions. Substituent contributions for the commonest substituents are given in Table 2. (Values of J_{meta}^{FF} in compounds with other substituents have been measured but only for one

^{*} Smith, Kline and French Labs. Ltd., Welwyn Garden City.

Coupling constants (c./sec.) in 2,6-difluoro-1-substituted benzenes

						H-	-H	H-F			F-F
						$\overline{J_{3,4}}$	$\overline{J_{3,5}}$	$\overline{J_{2,3}}$	$J_{2,4}$	$J_{2,5}$	$J_{2,6}$
CN		 				8.67	0.80	9.10	6.60	-0.82	0.00
CO ₂ H		 				8.48	0.90	9.50	6.40	-1.40	3.00
CO·Me		 				8.52	1.00	9.60	6.35	-1.40	3.90
CO ₂ Me		 				8.43	0.90	9.35	6.20	-1.30	2.70
NH,		 				8.47	1.30	10.40	6.25	-1.50	$12 \cdot 10$
NHĈO∙Me		 				8.44	1.35	9.50	6.10	1.90	4.50
NHEt		 				8.34	1.50	11.50	6.00	-1.70	10.90
Ι		 				8.37	1.20	7.40	6.35	-1.30	2.30
OCH ₂ ·CH ₂	$\cdot \mathrm{NH}_{2}$	 • •	• •	••	••	8.40	1.25	10.35	5.88	1.90	8.00

TABLE 2

				Contributi	(c./sec.)	
Substituent				ortho-ortho	ortho-para	meta-meta
н				0.0	0.0	0.0
\mathbf{F}		• •		-0.3	-3.8	-0.7
$\rm NH_2$		••	• •	$+6\cdot3$	-8.1	-0.8
C1			• •	-3.3	-0.3	+ 0.1
NO_2	• •	••		-7.7	$+ 6 \cdot 1$	+1.9
CN		••		-6.1	$+ 4 \cdot 4$	_
Ι	• •		••	-3.6	+0.6	+0.6

compound, thus these substituent contributions cannot be tested and are not included here.) The values in Table 2 together with the predicted value of $J_{meta}^{\rm FF}$ in *m*-diffuorobenzene of 6.3 c./sec. make it possible to calculate J_{meta}^{FF} in all the compounds incorporating these substituents. A best-fit analysis over 36 measured couplings yielded a mean deviation of 0.3 c./sec. As the experimental error in the J-values due to broad lines, complex analyses, etc., may be as much as 1 c./sec., the agreement obtained is strong support for the validity of the basic assumption of additive substituent contributions. Furthermore, this rule now enables one both to differentiate between $J_{2.6}$ and $J_{3.5}$ in the pentafluorophenyl derivatives and to predict the signs of all the J_{meta}^{FF} -values in these compounds (apart from those cases in which the couplings are small, *i.e.*, < 2 c./sec.).

The values of the substituent contributions we obtain are remarkable in that the contribution for a substituent ortho to both coupling nuclei is in general opposite in sign to that of a substituent oriented ortho and para to the coupling nuclei. There is also a reasonably good linear relationship between the substituent contribution and the Hammett σ -value⁷ of the substituent. This is also novel as H–H coupling is considered to operate via the σ -bonds of the aromatic system,⁸ yet the Hammett σ -value reflects the π -electron perturbation of the substituent. This suggests that there is an additional mechanism in F-F couplings which involves the π -electrons of the ring. We are grateful to Dr. L. F. Thomas for communicating his results prior to publication and to Dr. A. M. Roe, for samples of the 2,6-difluorobenzenes.

(Received, June 22nd, 1966; Com. 427.)

- ³ J. Homer and L. F. Thomas, J. Chem. Soc. (B), 1966, 141.
- J. Lawrenson, J. Chem. Soc. 1965, 1117.
 ⁵ N. Boden, J. W. Emsley, J. Feeney, and L. H. Sutcliffe, Mol. Phys., 1964, 8, 133.
 ⁶ L. F. Thomas, private communication.
- 7 H. H. Jaffé, Chem. Rev., 1953, 53, 191.
- ⁸ M. Karplus, J. Chem. Phys., 1959, 30, 11.

¹ J. A. Pople, W. G. Schneider, and H. J. Bernstein, "High Resolution Nuclear Magnetic Resonance" McGraw-Hill, New York, 1959.

² J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution Nuclear Magnetic Resonance Spectroscopy" Vol. 1, Pergamon, Oxford 1966.