The Metal-Metal Bond Dissociation Energy in Manganese Carbonyl

By D. R. BIDINOSTI and N. S. MCINTYRE

(Department of Chemistry, University of Western Ontario, London, Canada)

THE radical, •Mn(CO)₅, has been produced by the pyrolysis of manganese carbonyl vapour in a graphite effusion cell adjacent to the ion source in a mass spectrometer. The geometry of this assembly is similar to that described elsewhere.¹ At cell temperatures in the range $210-310^{\circ}$ c, Mn(CO)₅⁺ was observed at electron-impact energies below the appearance potential of $Mn(CO)_5^+$ from manganese carbonyl. This evidence for the production of the $Mn(CO)_5$ radical is further supported by the observation that with increasing cell temperatures the ratios $Mn_2(CO)_{9}^+/Mn_2(CO)_{10}^+$ and $Mn_2(CO)_8^+/Mn_2(CO)_{10}^+$ remained constant whereas the ratios $Mn(CO)_{5}^{+}/Mn_{2}(CO)_{10}^{+}$ and $Mn(CO)_4^+/Mn(CO)_{10}^+$ increased.

The ionization potential of $\cdot Mn(CO)_5$ (1) and the appearance potential of $Mn(CO)_5^+$ from manganese carbonyl (2) were measured relative to xenon using Warren's method.² The values

$$\mathbf{Mn(CO)}_{5} + e \to \mathbf{Mn(CO)}_{5}^{+} + 2e \tag{1}$$

$$\operatorname{Mn}_{2}(\operatorname{CO})_{10} + e \to \operatorname{Mn}(\operatorname{CO})_{5}^{+} + {}^{\bullet}\operatorname{Mn}(\operatorname{CO})_{5}^{+} + 2e (2)$$

If one assumes that ions produced in (1) and (2)are energetically the same then the algebraic difference between (2) and (1) is the dissociation,

$$\operatorname{Mn}_2(\operatorname{CO})_{10} \to 2 \cdot \operatorname{Mn}(\operatorname{CO})_5$$
 (3)

for which $D(Mn-Mn) = A.P. - I.P. = 18.9 \pm 1.4$ kcal. This low value for D is in accord with the very long Mn-Mn bond length³ of 2.93 Å and is to be compared with a previously reported value of 34 ± 13 kcal.⁴

(Received, July 18th, 1966; Com. 513.)

- ¹ D. R. Bidinosti and R. F. Porter, J. Amer. Chem. Soc., 1961, 83, 3737. ² J. W. Warren, Nature, 1950, 165, 810.
- ³ L. F. Dahl, E. Ishishi, and R. E. Rundle, J. Chem. Phys., 1957, 26, 1750.
- ⁴ F. A. Cotton and R. R. Monchamp, J. Chem. Soc., 1960, 533.

obtained are I.P. = 8.44 + 0.03 ev and A.P. = 9.26 ± 0.03 ev, respectively.