A Low-pressure Synthesis of $Ru_3(CO)_{12}$

By M. I. BRUCE and F. G. A. STONE (Department of Inorganic Chemistry, The University, Bristol 8)

THE orange ruthenium carbonyl reported by Manchot and Manchot¹ as Ru₂(CO)₉ has been shown to be the trinuclear $\operatorname{Ru}_{3}(\operatorname{CO})_{12}$ by Corey and Dahl.² Previous syntheses of this compound have involved decomposition, either at 50° or in sunlight, of Ru(CO)₅ formed by carbonylation of ruthenium black,1 ruthenium sulphide,3 or ruthenium stearate⁴ at high pressures (180-220 atm.) and temperatures (180-200°). Recently, Wilkinson and his co-workers have reported⁵ the formation of a carbonyl hydride, possibly $H_3Ru_4(CO)_{12}$, together with Ru₃(CO)₁₂, by treatment of a red carbonyl-containing chlororuthenium solution with hydrogen and carbon monoxide (120 atm., 75°) in the presence of silver as a halide-acceptor.

We now report a simple, low-pressure synthesis of $\operatorname{Ru}_3(\operatorname{CO})_{12}$. Carbonylation (< 10 atm., 65°) of ruthenium trichloride in methanol in the presence of a suitable halogen acceptor, e.g., zinc, gives the carbonyl in 75% yield. The product separates as large hexagonal crystals from the reaction mixture, and is essentially pure. If necessary, the carbonyl may be sublimed at 80-100° (0.1 mm), or recrystallised from cyclohexane or benzene as fine orange crystals, m.p. 154–155° (ν_{co} 2062, 2032, 2011 cm.-1; lit.⁶ 2061, 2032, 2015 cm.-1, both in CCl₄).

(Received, August 30th, 1966; Com. 640.)

- ¹ W. Manchot and W. J. Manchot, Z. anorg. Chem., 1936, 226, 385. ² E. J. Corey and L. F. Dahl, J. Amer. Chem. Soc., 1961, 83, 2203.
- ³ W. Hieber and H. Fischer, German Patent 695,589.
- ⁴ Imperial Chemical Industries, Ltd., British Patent 983,792
- ⁵ J. W. S. Jamieson, J. V. Kingston, and G. Wilkinson, Chem. Comm., 1966, 569.
- ⁶ W. Beck and K. Lottes, Chem. Ber., 1961, 94, 2578.