The Correlation of Enzymic Rates

By ANDREW WILLIAMS

(Chemistry Department, University of Kent, Canterbury)

THIS Communication is a preliminary account of a correlation of the deacylation rates *(k3)* of acylchymotrypsins; it is the first treatment which allows the prediction of enzyme rate constants for a range of derivatives conforming to the model R1R2CHCO-chymotrypsin.

Equation **(1)** correlates the deacylation rates **of** substituted benzoyl-, trimethylacetyl-, acetyl- and **formyl-chymotrypsins;¹⁻⁴**

\n
$$
\text{symotrypsins} \, \mu^{-4}
$$
\n

\n\n $\log_{10} k_3 = 0.85 \log_{10} k_{\text{OH}} - 1.2$ \n

\n\n (1)\n

(The degree of fit⁵ $\phi = 92\%$, with ten experimental points.)

where $k_{\text{OH-}}$ is the rate constant for the hydroxide ion-catalysed hydrolysis of the corresponding ethyl ester. The structures of deviant acyl groups are such that they would be expected to deviate; the deviation is a measure of a binding between acyl group and protein.

It can be shown4 that

$$
k_3 = \frac{\Sigma 1/K_1}{(1 + \Sigma 1/K_1 + \Sigma 1/K_1)} \times k \tag{2}
$$

where K_i is the dissociation constant for a binding which aligns the acyl group favourably for reaction and K_i is a dissociation constant for an unfavourable binding. The hypothetical rate constant *k* for reaction of the acyl group when fixed in a favourable configuration is proportional to the rate constant for reactions of acyl groups with no binding complications $(e.g., k_{\text{OH}-})$. The dissociation constant of each configuration can be expressed as the multiple of the microscopic binding constants $K = K_1 \cdot K_2 \cdot K_0$ for the binding of each part $(R^1, R^2 \ldots)$ of the acyl group with a site $(\rho_1, \rho_2 \ldots)$ on the protein.⁶,⁷ Assumptions are that $\mathbb{R}^1\rho_1$, \mathbb{R}^2 _{ρ_2} interactions are mutually exclusive, and are respectively hydrogen bonding of an amido-group

TABLE 1.

 (k_3) 's ^{1-5 9-11} and k_{0H} -'s^{4,12} refer to 25°, 0.1-M ionic concentration).

TABLE 2. Acetyl-D-derivative k_3 (obs.) \times 10²sec.⁻¹ k_3 (calc.) \times 10²sec.⁻¹ Phenylalanine 3.0 2.1

Leucine 6.75 5.1 Leucine ... 6.75 5.1 Leucine 6.75 5.1
Tryptophan 5.6 2.33

 $[k₃(calc.)$ derived from equation (5)].

and hydrophobic binding; if \mathbb{R}^1 and \mathbb{R}^2 are small $(e.g.,\ hydrogen)$ there is negligible binding; there are no $\mathbb{R}^1\rho_2$ or $\mathbb{R}^2\rho_1$ interactions (complications can arise here* and are dealt with in a later publication) ; the binding of the rest of the acyl group in the reactive configuration is constant (K_{c}) .

Equation (3) correlates k_3 for L-derivatives of α_{min} amino-acids ($\phi = 87\%$, 22 experimental values).
 $\log_{10} k_3 = 0.85 \log_{10} k_{\text{off}} - 1.2 + S_1 + S_2$ (3)

$$
\log_{10} k_3 = 0.85 \log_{10} k_{\text{OH}} - 1.2 + S_1 + S_2 \quad (3)
$$

This empirical equation can be derived from equation (2) if only one favourable configuration predominates and if $K_1 \cdot K_2 \cdot K_0 > 1$.

An important corollary is that *k,'s* for D-derivatives of amino-acids fit equation **(4)** derived from the theoretical equation. Allowing the assumptions already stated, the D-acyl group has three predominant configurations represented by the interactions $\mathbb{R}^1\mathfrak{\rho}_1$, $\mathbb{R}^2\mathfrak{\rho}_2$ and $\mathbb{R}^1\mathfrak{\rho}_1\mathbb{R}^2\mathfrak{\rho}_2$. The last situation is unfavourable for reaction because the carbonyl must be distorted from the reactive configuration obtained with the corresponding L-compound.

 $k_{3} =$

$$
\frac{(1/K_1 + 1/K_2)}{(1 + 1/K_1 \cdot K_2 + 1/K_2 K_2 + 1/K_1 K_2 K_2')} \times \frac{k}{K_0} \tag{4}
$$

 K_c for the reactive configuration differs from that for the unreactive one; k_3 decreases as K_1 · $K_2K'_c$ decreases. The data for acetyl-D-derivatives⁹ (Table **2)** fit the empirical equation (5) which can **be**

$$
k_3 = \frac{\text{antilog } \mathrm{S}_1 + \text{antilog } \mathrm{S}_2}{\text{antilog } \mathrm{S}_1 \cdot \text{antilog } \mathrm{S}_2} \times 61 \times 10^{-2} \,\text{sec.}^{-1} \,\text{(5)}
$$

derived from equation **(4)** using the assumptions given above.

The binding of derivatives not conforming to the prototype can be estimated using equation **(1):** cinnamoylchymotrypsin has $\log_{10} k_3$ (obs.) / k_3 (calc.) $= 1.2$ indicating less binding than in the fully saturated compound $(S_2 = 1.96)$. An explanation is that the cinnamoyl group is constrained from binding fully at the ρ_2 site.

The reactivity of acylchymotrypsins, represented by equation (1) , allows the comparison of enzymic reactivity with model systems because binding effects, not directly concerned with reaction, are excluded.

That specificity in *k,* is largely entropy controlled' is supported by the good correlation obtained in this treatment.

(Received, September 26th, 1966; Com. 715.)

- **1** M. Caplow and W. **I?.** Jencks, *Biochemistry,* 1962, **1,** 883.
- **²**M. L. Bender and G. **A.** Hamilton, *J. Amer. Chem. Sac.,* 1962, **84, 2570.**
- ³ F. J. Kézdy and M. L. Bender, *Biochemistry*, 1962, 1, 1097.
- **A.** Williams, work to be published.
- ⁵ C. G. Swain, D. C. Dittmer, and L. E. Kaiser, *J. Amer. Chem. Soc.*, 1955, **77, 3737**.
⁶ C. L. Hamilton, C. Niemann, and G. S. Hammond, *Proc. Nat. Acad. Sci. U.S.A.*, 1966, 55, 664.
-
- *7* M. L. Bender and F. J. KCzdy, *Ann. Rev. Biochem.,* 1965, **34,** 49. *⁸*S. G. Cohen and S. *Y.* Weinstein, *J. Amer. Chem. Soc.,* 1964, **86,** 5326.
-
- ⁹ D. W. Ingles, J. R. Knowles, and J. A. Tomlinson, *Biochem. Biophys. Res. Comm.*, 1966, 23, 619.
¹⁰ M. L. Bender, F. J. Kézdy, and C. R. Gunter, *J. Amer. Chem. Soc.*, 1964, 86, 3714.
¹¹ M. L. Bender, private comm
-
- ¹¹ M. L. Bender, private communication.
¹² National Bureau of Standards; Circular 510.