By R. UGO, F. CARIATI, and G. LA MONICA (Istituto di Chimica Generale dell'Università, C.N.R. Laboratory, Milan, Italy)

In their work on zerovalent platinum derivatives, Malatesta and Cariello pointed out^1 that these

compounds dissociate easily in solution, and suggested the existence of a compound such as

NUMBER 23, 1966

 $[Pt(PPh_3)_2]$ to explain the dissociation of $[Pt(PPh_3)_3]$. The same intermediate was suggested later² to account for the rate of exchange of the acetylene part of $[Pt(PPh_3)_2L]$, where L is acetylenic.

The compound bistriphenylphosphineplatinum-(0) has now been isolated in several ways.

 Potassium hydroxide in alcohol is slowly added to an alcoholic solution of [PtH-(PPh₃)₃]HSO₄ through which a stream of oxygen is passing.

 $2[PtH(PPh_3)_3]HSO_4 + 2KOH + O_2 \rightarrow$ $2[Pt(PPh_3)_2] + 2Ph_3PO + 2KHSO_4$

(2) A stoicheiometric amount of hydrogen peroxide and KOH in alcohol are slowly added to an alcoholic solution of [PtH(PPh₃)₃]-HSO₄.

 $[PtH(PPh_3)_3]HSO_4 + KOH + H_2O_2 \rightarrow$

 $[Pt(PPh_3)_2] + Ph_3PO + KHSO_4 + 2H_2O$

The yield in this case is 60%.

¹ L. Malatesta and C. Cariello, J. Chem. Soc., 1958, 2323.

² A. D. Allen and D. C. Cook, *Canad. J. Chem.*, 1964, 42, 1063.

(3) The following reactions also give the desired product, in lower yields.

 $trans-[PtH(CN)(PPh_3)_2] + KOH \rightarrow$ $[Pt(PPh_3)_2] + KCN + H_2O$ $trans-[PtHCl(PPh_3)_2] + LiC_4H_9 \rightarrow$

 $[Pt(PPh_3)_2] + LiCl + C_4H_{10}$

In the latter case, the stoicheiometric amount of butyl-lithium is essential, and the reaction must be carried out under nitrogen.

[Pt(PPh₃)₂] is a yellow compound, m.p. 157-160°, stable for a few hours in the solid state, but unstable in solution, where it seems to dissociate (M, found 464 in benzene, 395 in acetone; calc. 719). It behaves as an unsaturated compound, $[Pt(PPh_3)_2] + L \rightarrow [Pt(PPh_3)_2L]$ for example, $(L = PPh_3, CO, PhC \equiv CPh, Ph-CH=CH-Ph)$ and in some reactions it shows a carbene-like reactivity: $[Pt(PPh_3)_2] + CH_3I \rightarrow [Pt(PPh_3)_2CH_3I].$ However, it does not catalyse the hydrogenation or the isomerisation of olefins and seems to be a very poor catalyst for the dimerisation or polymerisation of butadiene.

(Received, October 5th, 1966; Com. 743.)