The Infrared Spectrum of P₂I₄

By R. L. CARROLL* and A. H. COWLEY[†]

(*Research Department, Inorganic Chemicals Division, Monsanto Company, St. Louis, Missouri; †Department of Chemistry, University of Texas, Austin, Texas)

THE existence of a gauche conformer of P_2I_4 was originally postulated on the basis of dipole moment¹ and infrared spectroscopic^{2,3} studies of CS₂ solutions of this compound. However, in a more recent and extensive infrared and Raman study,⁴ it was concluded that the *trans* conformation of solid P_2I_4 persists in a variety of solvents which includes CS_2 . Accepting this conclusion there still remains the question as to why CS_2 solutions of P_2I_4 exhibit more than two infrared frequencies in P-I stretching region^{2,3} [only 2 infrared-active P-I stretching modes $(A_u + B_u)$ are predicted for

trans- P_2I_4]. Specifically we refer to frequencies at 303vw, 313m, 328s, 332s, and 355w. We believe that this apparent anomaly can be explained in terms of the equilibrium

$$3P_2I_4 \rightleftharpoons 4PI_3 + \frac{1}{2}P_4$$

Thus, the 303 and 328 cm.⁻¹ absorptions can be assigned to PI_{3} ,* and the 313 and 332 cm.-1 absorptions to trans- P_2I_4 . The 355 cm.⁻¹ band can be assigned to a combination, overtone, or impurity as pointed out previously.² The existence of the above equilibrium is strongly supported by the behaviour of ³¹P n.m.r. spectra of CS₂ solutions of freshly recrystallized P_2I_4 . Within five minutes of dissolving the P2I4, the ³¹P n.m.r. spectrum showed the presence of small amounts of PI_3 (-170 p.p.m.) and P₄ (460 p.p.m.) in the predicted phosphorus atom ratio of 2:1. Moreover, when twice-recrystallized P_2I_4 was dissolved in CS_2 , cyclohexane, or carbon tetrachloride, which were rigorously protected from moisture and oxygen, the characteristic u.v. absorption spectrum of PI₃ was evident upon complete dissolution. Also, solutions of P_2I_4 and PI_3 are unstable with respect to formation of colloidal material. This probably results from the catalytic conversion⁵ of the white phosphorus by iodine into red phosphorus and/or phosphorus-iodine polymers, which could account for the absence of a strong band⁶ for P_4 at 461 cm.⁻¹ This band is rather broad and, if present, could be masked by the strong broad CS₂ band at 400 cm.⁻¹. Additional evidence illustrating lability and complexity of the phosphorus-iodine system will be presented separately.7

(Received, November 7th, 1966; Com. 861.)

* Previous values for the i.r.-active P-I stretching modes of PI₃ in CS₂ solution are 305w and 327s (ref. 2).

- ¹ M. Baudler and G. Fricke, Z. anorg. Chem., 1963, 320, 11.
- ² A. H. Cowley and S. T. Cohen, Inorg. Chem., 1965, 4, 1200.
- ³ M. Baudler and G. Fricke, Z. anorg. Chem., 1966, 345, 129.
- ⁴ S. G. Frankiss, F. A. Miller, H. Stammreich, and T. Teixeira Sans, Chem. Comm., 1966, 318.
- ⁵ T. W. DeWitt and S. Skolnik, J. Amer. Chem. Soc., 1946, 68, 2305. ⁶ H. J. Bernstein and J. Powling, J. Chem. Phys., 1950, 18, 1018.
- ⁷ R. L. Carroll and R. P. Carter, Inorg. Chem., in the press.