Carbon Disulphide Complexes of some Transition-metal Ions

By M. BAIRD, G. HARTWELL, JR., R. MASON, A. I. M. RAE, and G. WILKINSON (Departments of Chemistry, Imperial College, London, and University of Sheffield)

As part of a general investigation into the properties of carbon disulphide as a ligand, we have earlier shown¹ that tris(triphenylphosphine)platinum(0) forms the stable adduct, $Pt(CS_2)(PPh_3)_2$. The structure of, and bonding in, this complex can now be discussed from the results of a single crystal X-ray analysis.

 $Pt(CS_2)(PPh_3)_2$ crystallises in the space group

 $P2_1/n$ with a unit cell, a = 11.50 Å, b=19.43 Å, c = 14.22 Å, $\beta = 91.1^\circ$; Z = 4. The intensities of 1360 non-equivalent reflexions have been measured on a "Pailred" automatic diffractometer, the molecular structure, shown in Figure 1, being determined by the usual combination of Patterson and Fourier methods. Block-diagonal least squares refinement of atomic co-ordinates, anisotropic

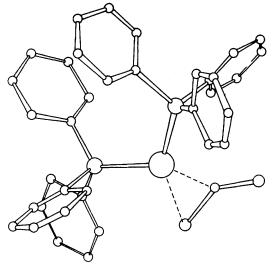
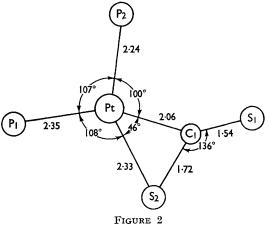


FIGURE 1

thermal parameters of the platinum, phosphorus and sulphur atoms and isotropic thermal factors for all the carbon atoms has reduced the reliability index to a present value of 0.088.

The geometry of the metal co-ordination is shown in detail in Figure 2. The two tristriphenylphosphine ligands are related by an approximate C_2 axis passing through the platinum atom. Average standard deviations in the bond lengths are 0.01 Å (Pt-P), 0.01 Å (Pt-S), 0.04 Å (Pt-C), and 0.05 Å (C-S). The average e.s.d. of the bond angles is 1.5°.


The two planes containing, respectively, Pt, P-1, and P-2 and Pt, C-1, and S-2 intersect on an axis which bisects the angle P-1-Pt-P-2; the dihedral angle between these planes is only 6° so that the CS₂ ligand is essentially co-planar with the platinum and phosphorus atoms.

The two independent platinum-phosphorus bond lengths differ by 0.11 Å (10σ), the longer bond being *trans* to the formally σ -bonded carbon of the CS₂ ligand. Details of the nature of the bonding of the carbon disulphide to the metal are given elsewhere² but it is worth pointing out here that

- (i) the observed bond angle S-C-S of 136° is identical, within experimental error, with that found, by spectroscopic methods, for the first excited state of CS₂, and
- (ii) the C-S bond length of CS₂ in its ground state is 1.554 Å³ and 1.64 Å in the excited state.⁴ The two independent C-S bond lengths of 1.54 Å and 1.72 Å found in the

platinum complex are in close agreement with these values.

The bonding of carbon disulphide to platinum can therefore be thought of as involving a oneelectron transfer, *via* the intermediacy of the platinum, from the highest lying π -molecular orbital of the ligand to its lowest antibonding molecular orbital.

The orange isostructural palladium compound, Pd(CS₂)(PPh₃)₂ ($\nu_{C-S} = 1193$ cm.⁻¹), can be prepared in a like manner, that is by treating tetrakis(triphenylphosphine)palladium⁵ with carbon disulphide: refluxing Ni(CO)₂(PPh₃)₂⁶ in CS₂ for several hours gives the very dark red Ni(CS₂)-(PPh₃)₂, which has a much simpler X-ray powder diffraction pattern than the palladium and platinum compounds. The nickel complex (I) is

only very slightly soluble in organic solvents and is probably dimeric or polymeric with CS₂ bridges $(v_{c-s} = 1122 \text{ cm.}^{-1}).$

The yellow cobalt complex, K₆[(NC)₅ Co·S·CS·Co-(CN)]₅, prepared by treating an aqueous solution of $K_2[(Co(CN)_5]^7$ with CS_2 , undoubtedly contains a bridging CS₂ ligand (II). The complex has v_{c-s} at 983 cm.⁻¹ and 840 cm.⁻¹ and is probably similar to the complexes Me₃ Sn·S·CS·NMe₂⁸ and Bu₃Sn·S·CS· OMe,⁹ obtained by the insertion of CS₂ into Me₃SnNMe₂ and Bu₃Sn·OMe, respectively.

Treatment of RhCl(PPh₃)₃¹⁰ and IrICO(PPh₃)₂¹¹ with CS_2 gives the deep-red $RhCl(CS_2)_2(PPh_3)_2$ and the yellow-brown IrICO(PPh₃)₂(CS₂), respectively. The former appears to contain both a " π -bonded" $\mathrm{CS}_2~(\nu_{\mathrm{C-S}}=1028~\mathrm{cm}.^{-1})$ and an S-bonded CS_2 group ($v_{c-s} = 1510$ cm.⁻¹) and is formally a sixco-ordinate complex of rhodium(III) (III). The iridium compound has two C-S stretching bands in the infrared spectrum centred at 1188 cm.-1 and 1165 cm.⁻¹ and may be a mixture of isomers differing in the orientation of the CS₂ ligand (IV and V); both complexes are sensitive to air.

Structurally related compounds of methyl and phenyl isothiocyanate have been obtained. The complexes $Pt(RNCS)(PPh_3)_2$ (R = Me, Ph) appear, on the basis of their infrared spectra, to contain the organic groups " π -bonded" to the metal atoms via the C-S bonds (VI) while the complex RhCl- $(PhNCS)_{2}(PPh_{3})_{2}$ appears to contain both " π bonded" and S-bonded PhNCS groups. Further preparative and structural work is continuing with these and similar complexes of metals with unsaturated organic ligands.

(Received, December 13th, 1966; Com. 988.)

- ¹ M. C. Baird and G. Wilkinson, Chem. Comm., 1966, 514.
- ² R. Mason and A. I. M. Rae, in preparation.
- ³ A. H. Guenther, J. Chem. Phys., 1959, 31, 1095.
 ⁴ B. Kleman, Canad. J. Phys., 1963, 41, 2034.

- ⁴ B. Kleman, Canad. J. Phys., 1963, 41, 2034.
 ⁵ L. Malatesta and M. Angoletta, J. Chem. Soc., 1957, 1186.
 ⁶ J. D. Rose and F. S. Statham, J. Chem. Soc., 1950, 69.
 ⁷ F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 2nd. edn, Wiley, New York, 1966, p. 869.
 ⁸ K. Jones and M. F. Lappert, J. Chem. Soc., 1965, 2157.
 ⁹ A. J. Bloodworth and A. G. Davies, J. Chem. Soc., 1965, 5238.
 ¹⁰ M. A. Bennett and P. A. Longstaff, Chem. and Ind., 1965, 846.
 ¹¹ P. B. Chock and J. Halpern, J. Amer. Chem. Soc., 1966, 88, 3531.