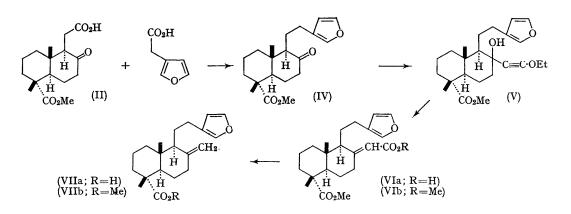
The Synthesis of Antipodal Polyalthic Acid from Levopimaric Acid¹

By S. W. PELLETIER, L. B. HAWLEY, JR., and K. W. GOPINATH

(The Department of Chemistry, The University of Georgia, Athens, Georgia 30601 U.S.A.)

WE report the synthesis of the furano-diterpenoid system (VII) having the stereochemistry antipodal to that of polyalthic acid (I).² The starting point in the synthesis was the keto-acid ester (II) obtained by exhaustive ozonolysis of methyl levopimarate (III). The synthesis of (\pm) -(II) has been reported.³



Ozonization of methyl levopimarate, m.p. 61– 62° [lit.⁴ 64–65°; $\lambda_{max} 272.5 \text{ m}\mu \ (\epsilon 5490)$] in ethyl acetate at -40° followed by oxidation of the ozonide mixture with potassium permanganate in acetone gave the keto-acid ester (II),⁵ m.p. 176– 178° (lit.⁶ 173–174°): ν_{max} (neat) 3448–2564, 1727, and 1712 (doublet), 1695 sh., cm.⁻¹; n.m.r. (CDCl₃): τ 9.21 (3H singlet), 8.81 (3H singlet), 6.31 (3H singlet), and 1.62 (broad singlet, CO₂H), in yields varying from 20–45%.

Elaboration of the C-9 side chain bearing the furan ring was accomplished by Kolbe electrolytic coupling^{7,8} of (II) and 3-furylacetic acid.⁹ The 3-furylacetic acid employed in the electrolysis was prepared from 3-furoic acid⁹ according to the Arndt-Eistert method.¹⁰

When the mixture of keto-acid ester (II) and 3 furylacetic acid in dimethylformamide containing

triethylamine was electrolyzed using smooth platinum electrodes the desired keto-ester (IV), [m.p. 93—96°; v_{max} (CCl₄) 1732, 1720, 1493, 1021, and 873 cm.-1; n.m.r. (CCl₄) 7 9.28 (3H singlet), 8.87 (3H singlet), 6.41 (3H singlet), 3.88 (1H multiplet), 2.94 (1H multiplet), 2.81 (1H multiplet)] was formed as one of the products. Elaboration of the exocyclic methylene group was accomplished by the Stork procedure^{8,11} by treatment of (IV) with lithium ethoxyacetylide at -20° to give the acetylenic carbinol (V): v_{max} (CCl₄) 3500, 2262, 1727, 1495, 873 cm.-1, which without purification was converted into the required $\alpha\beta$ -unsaturated ester (VIb) [v_{max} (CCl₄) 1724, 1637, 1493, and 875 cm.⁻¹; λ_{\max} (EtOH) 220 m μ (20,000)] by treatment with methanolic 10% sulphuric acid in a yield of 60%from (IV). Heating (VIb) under reflux with aqueous methanolic potassium hydroxide gave the unsaturated acid (VIa) in 80% yield, which without purification was decarboxylated⁸ to (VIIb) by heating in quinoline containing copper chromite.¹² The olefinic ester (VIIb): v (CCl₄) 1724, 1639, and 893, 1495, and 873 cm.⁻¹, was smoothly hydrolyzed to the corresponding antipodal polyalthic acid (VIIa): [m.p. 98-99°; v (CCl₄) 1692, 1638 and 895, 1495 and 874 cm.⁻¹; n.m.r. (CDCl₃) τ 9.3 (3H singlet), 8.8 (3H singlet), 8.3 (multiplet, methylene protons), 5.4 (1H multiplet, olefinic proton), 5.1 (1H multiplet, olefinic proton), 3.7 (1H multiplet, β -proton on furan ring), 2.8 and 2.6 (1H multiplet for both α -protons on furan ring)] by treatment with potassium t-butoxide in dimethyl sulphoxide.13 The infrared (CHCl₃ and Nujol mull), n.m.r. (CDCl₃), and mass spectra of the acid (VIIa) were

identical in all respects with those of a natural sample of polyalthic acid as was also the behaviour of the two samples on thin-layer silica gel chromatoplates in ethyl acetate-benzene-ether (1:3:0.1).

(Received, November 28th, 1966; Com. 939.)

¹ Part of a dissertation by L. B. Hawley, Jr. submitted to the Graduate School in partial fulfilment of the requirements for the Ph.D. in Chemistry.

² K. W. Gopinath, T. R. Govindachari, P. C. Parthasarathy, and N. Viswanathan, Helv. Chim. Acta, 1961, 44, 1040. ³ See accompanying Communication, p. 94.

⁴ V. Loeblich, D. Baldwin, R. O'Conner, and R. V. Lawrence, J. Amer. Chem. Soc., 1955, 77, 6311.

⁵ Satisfactory analytical data were obtained for all compounds reported in this Communication. Melting points are corrected.

⁶ L. Ruzicka, E. Bernold, and A. Tallichet, Helv. Chim. Acta, 1941, 24, 223.

⁷ L. Rand and A. F. Mohar, J. Org. Chem., 1965, **30**, 3885. ⁸ G. Stork, A. Meisels, and J. E. Davies, J. Amer. Chem. Soc., 1963, **85**, 3419. This electrolytic coupling is analogous to that used in the Stork onocerin synthesis, except that the Stork synthesis involved symmetrical coupling.

⁹ E. Sherman and E. D. Amstutz, J. Amer. Chem. Soc., 1950, **72**, 2195. ¹⁰ M. S. Newman and P. F. Beal, J. Amer. Chem. Soc., 1950, **72**, 5163.

¹¹ N. Danieli, Y. Mazur, and F. Sondheimer, Tetrahedron Letters, 1961, 310.
¹² H. Adkins and R. Conner, J. Amer. Chem. Soc., 1931, 53, 1091.
¹³ F. C. Chang and N. Wood, Tetrahedron Letters, 1964, 2969.