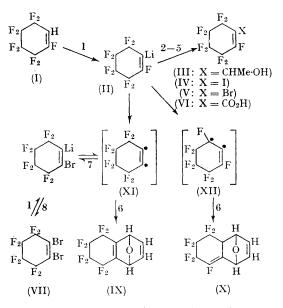
Perfluorocycloalkenyl-lithium Compounds

By S. F. CAMPBELL, R. STEPHENS, and J. C. TATLOW


(Department of Chemistry, University of Birmingham, P.O. Box 363, Edgbaston, Birmingham, 15)

POLYFLUOROCYCLOALKANES with strong bases undergo elimination to form olefins but 1H-undecafluorobicyclo[2,2,1]heptane¹ and pentafluorobenzene with methyl-lithium give the corresponding organolithium compound and methane (no easy elimination pathway from the carbanion exists). Another such stable fluorocarbanion system could arise from a 1H-fluorocycloalkene. However, fluoro-olefins, including perfluorocycloalkenes, react readily with nucleophiles, among them methyl-lithium,² to give substitution products. We have found that 1H-nonafluorocyclohexene (I), 1H-heptafluorocyclopentene, and 1H-pentafluorocyclobutene react with methyllithium in diethyl ether at -70° by loss of H and not of F (1 mol. of methane was evolved). Subsequent addition of acetaldehyde at -70° to the systems, followed by acid hydrolysis gave 1-(nonafluorocyclohexen-1-yl)ethanol (III) (63%), m.p. 44-45°, 1-(heptafluorocyclopenten-1-yl) ethanol (42%), b.p. 141°, and 1-(pentafluorocyclobuten-1yl)ethanol (23%), b.p. 138°, respectively. Another class of relatively stable fluorocarbanions is therefore available by this route.

As with other halogeno-substituted vinyllithium compounds,^{3,4} the above lithium compounds decomposed between -10° and 15° to give lithium fluoride and, largely, an intractable polymer.

The properties of nonafluorocyclohexenyl-lithium (II) were studied in some detail. Thus, it reacted readily with iodine, bromine, and carbon dioxide to give 1-iodononafluorocyclohexene (IV) (59%) b.p. 118°, 1-bromononafluorocyclohexene (V) (46%)

b.p. 95—96°,⁵ and nonafluorocyclohexene-1-carboxylic acid (VI) (77%) b.p. 174—177°, respectively. When a solution of the lithium compound (formed by methyl-lithium prepared from methyl bromide) in diethyl ether was allowed to attain room temperature and then refluxed for $\frac{1}{2}$ hr., 1,2dibromo-octafluorocyclohexene⁵ (VII) (13%) and a

Reagents: 1, MeLi; 2, MeCHO to give (III); 3, I_2 to give (IV); 4, Br_2 to give (V); 5, CO_2 to give (VI); 6, furan; 7, LiBr; 8, MeBr.

polymer (82%), suspected to be largely a poly-(octafluorocyclohex-1-ene) (VIII), but probably containing isomeric systems, m.p. 175-183° (sealed tube), were formed. Similarly, when a solution of the lithium compound was allowed to attain room temperature in the presence of furan, a polymer (80%), displaying the same i.r. spectrum, was obtained together with two adducts, one 5,8epoxy-1,1,2,2,3,3,4,4-octafluoro-1,2,3,4,5,8-hexahydronaphthalene (IX) (14%) m.p. 38-40°, and the other probably the 5,8-epoxy-1,2,2,3,3,4,4,10octafluoro-2,3,4,5,8,10-hexahydronaphthalenes (X) (4%), m.p. 50-68°. A minor component with the same v.p.c. retention time as 1,2-dibromo-octafluorocyclohexene was detected but could not be isolated on a preparative scale.

The above products of decomposition of nonafluorocyclohexenyl-lithium (II) are thought to arise from the two unstable species octafluorocyclohexyne (XI) and octafluorocyclohexa-1,2-diene (XII)* which would be formed in competing synperiplanar eliminations of lithium fluoride.

All of the compounds isolated in this study had correct elemental analyses and consistent i.r., n.m.r. and mass spectra.

(Received, December 7th, 1966; Com. 969.)

* G. Wittig and P. Fritze (Angew. Chem., 1966, 5, 846) have detected cyclohexa-1,2-diene in the dehydrobromination of 1-bromocyclohexene but they obtained no evidence for a simultaneous formation of cyclohexyne. ¹S. F. Campbell, R. Stephens, and J. C. Tatlow, *Tetrahedron*, 1965, **21**, 2997. ²D. R. Sayers, R. Stephens, and J. C. Tatlow, *J. Chem. Soc.*, 1964, 3035.

- P. Tarrant, P. Johncock, and J. Savory, J. Org. Chem., 1963, 28, 839.
 G. Köbrich and K. Flory, Chem. Ber., 1966, 99, 1773.
- ⁵ S. F. Campbell and R. Stephens, J. Chem. Soc., 1965, 7367.