Kinetics of Reactions of the Hydrated Electron ; **Apparent Conflicts between Data from Pulse Radiolysis and Steady-state Experiments**

By G. V. *BUXTON* and F. *S.* **DAINTON**

(Cookridge High Energy Radiation Research Centre, University of Leeds, Cookridge Hospital, Leeds **16)**

and G. *THIELENS*

(Department of Chemistry, University of Ghent, Belgium)

WHEN two solutes *A* and B can react with the hydrated electron, e_{aq}^- , to form stable products P_a and Pb *via* the intermediates *A-* and *B-* [equations (1) and (2)] the rate constant ratio k_1/k_2 can be

$$
e_{\mathbf{a}\mathbf{q}}^- + \mathbf{A} \to \mathbf{A}^- \to \mathbf{P}_\mathbf{a} \tag{1}
$$

$$
e_{aq}^- + B \to B^- \to P_b \tag{2}
$$

obtained *either* from measurements of *K,* and *K,* separately by pulse radiolysis *or* from measurement of $G(P_a)$ or $G(P_b)$ for solutions containing both A and B. In the latter case the effect of [B] on $G(P_a)$ is given by equations (3a) and (3b), where G_e is the yield of hydrated electrons. If however electron transfer **(4)** from **A-** to B can

$$
{G(\mathrm{P}_a)}^{-1} = G_e^{-1} \{ 1 + k_2[\mathrm{B}]/k_1[\mathrm{A}] \}
$$
 (3a)

$$
\{G_{\mathbf{e}} - G(\mathbf{P}_{\mathbf{a}})\}^{-1} = G_{\mathbf{e}}^{-1} \{1 + k_1[\mathbf{A}]/k_2[\mathbf{B}]\} \quad (3b)
$$

occur and τ_a is the reciprocal of the first-order rate

$$
A^- + B \rightarrow A + B^- \rightarrow A + P_b \qquad (4)
$$

constant for formation of P_a from A-, then equation (5) should be applicable.

$$
{G(\mathrm{P}_a)}^{-1} = G_e^{-1} \{1 + k_2[\mathrm{B}]/k_1[\mathrm{A}]\} \{1 + k_4 \tau_a[\mathrm{B}]\} (5)
$$

Correspondingly if reaction **(6)** occurs instead of reaction **(4)** the appropriate equation is **(7).**

$$
A + B^- \rightarrow A^- + B \rightarrow P_a + B \qquad (6)
$$

Consequently three situations may be recognised

$$
\{G_e - G(P_a)\}^{-1} =
$$

\n
$$
G_e^{-1} \{1 + k_1[A]/k_2[B]\} \{1 + k_6 \tau_b[A]\} \tag{7}
$$

Rate constants for reactions of hyper-reduced ions with N_2O *and* H_2O_2 .

* This **value** from **steady-state studies only**

by plotting ${G(P_a)}^{-1}$ against $[B]/[A]$: (i) when reactions **(4)** and **(6)** do not occur a straight line is obtained from which a value of k_1/k_2 is calculated which accords with the pulse radiolysis data, (ii) when **(4)** occurs but **(6)** does not, positive deviation from the line appropriate to case (i) should be observed, and (iii) when **(6)** occurs but **(4)** does not, negative deviation should result.

Case (i) is the most frequent. Recently we have identified case (iii) for $A = N_2O$ and $B = Co^{2+}$, Ni2+, and Cd2+, and the Figure illustrates typical

Dependence of $\{G(N_2)^{-1}$ *on* $[N_2O]$ *and* $[Cd^{2+}]$ *for* γ *irradiated aqueous solution containing* **CdSO,** *and* **[N20]** A and A and B are A and B and A and B at $\mu = 0.40$. Broken
 B and C and C and C and B $k_1/k_2 = 2.6$ and $k_6 \tau_b = 150$ M⁻¹.

results when $B = Cd^{2+}$. The true value of k_1/k_2 is
obtained by plotting $\{G_e - G(N_2)\}^{-1}$ against ${G_e - G(N_2)}^{-1}$ against $[Cd^{2+}]^{-1}$ when $[N_2O]$ is kept constant *[cf, equation* **(7)].** Substitution of this value in equation (3a) leads to the broken lines in the Figure, whereas the actual values of ${G(N_2)}^{-1}$ when plotted against $\left[\text{Cd}^{2+}\right]/\left[\text{N}_2\text{O}\right]$ fall on slight curves lying well below these lines. The full lines correspond to k_{α} (Cd⁺ + $N_2O) \times \tau (Cd^+ \rightarrow ?) = 150 \text{ M}^{-1}.$

In these experiments $B^- = \text{Co}^+$, Ni⁺, or Cd⁺ each of which has a characteristic absorption spectrum. Therefore k_6 may be measured directly by pulse radiolysis and the values we have obtained are shown in the Table. The products of reaction **(6)** other than nitrogen are unknown and may be CoO⁺, NiO⁺, and CdO⁺ or Co²⁺ + O⁻, Ni²⁺ + O⁻, and $Cd^{2+} + O^-$, respectively.

A similar situation arises when H_2O_2 is used instead of N_2O to compete with Co^{2+} , Ni^{2+} , and Cd²⁺ for hydrated electrons, the reaction corresponding to (6) being (8) . Values of k_8 are shown

$$
H_2O_2 + B^- \rightarrow H_2O + BO^- \text{ or } OH^- + OH + B(8)
$$

in the Table from which it is seen that for $A = N_2O$ the order of reactivity is Co^+ > Ni^+ > Cd^+ whereas for $A = H_2O_2$ it is $Cd^+ > Co^+ > Ni^+$.

Case (ii) will be discussed in a separate communication.

(Received, December 22nd, **1966;** *Cow. 1023.)*

J. H. **Baxendale, E.** M. **Fielden, and** J. **P. Keene,** *Proc. Roy. SOL,* **1965,** *A,* **286, 320.**