Some Thermal Condensation Reactions of Phenylphosphonothioic Diamides. A New Phosphorus-Nitrogen-Sulphur Heterocyclic System

By E. H. M. IBRAHIM and R. A. SHAW

[Department of Chemistry, Birkbeck College (University of London), Malet Street, London, W.C.1]

In connection with polymerisation studies on phenylphosphonic¹ and phenylphosphonothioic diamides² more detailed investigations into the behaviour of the relevant monomers and oligomers became necessary. We report here on the sulphurcontaining species. Apart from a study by Trippett³ on the thermal condensation dimerisation of two diamides, PhP(:S)(NHR)₂ (I; R = Me or CH₂Ph), nothing definite is known about the behaviour of this class of compounds.

We have prepared a series of monomeric diamides, $PhP(:S)(NHR)_2$ (I; R = H, Me, Et, Pr^n , Buⁿ, or Ph) and have studied their thermal condensation reactions. The parent diamide (I; R = H) condenses near 160° to the cyclic trimer $[PhP(:S)NR]_3$ (II; R = H) whilst most of its alkyl homologues so far studied give the cyclic dimers $[PhP(:S)NR]_2$ (IV; R = Me, Et, Pr^n , or Buⁿ). More detailed investigation revealed a more complex reaction behaviour. Thus with the

diamide (I; R = Et), the linear dimer, $NR[PhP-(:S)NHR]_2$ (III; R = Et), is formed at 180°, the cyclic dimer (IV; R = Et), at 200°, and the

dealky lated dimer (IV; $\rm R=H)$ at 225°. The three products were isolated and characterised.

The thermal condensation of the diamide (I; R = Ph) at 265° takes a different course. The product, although its analysis and molecular weight are in agreement with the values expected for the cyclic dimer (IV; R = Ph), yields diphenylphosphinic acid on hydrolytic degradation. We therefore tentatively suggest a novel six-membered-ring structure (V; R = Ph) which is in accord

with our experimental findings. A crystallographic examination of this compound is being carried out elsewhere.

The reactions are summarised in the scheme. All compounds have satisfactory analysis and molecular weights. Their ultraviolet, infrared, and ¹H n.m.r. spectra are in accord with the structures suggested.

(Received, January 30th, 1967; Com. 088.)

¹ R. A. Shaw and T. Ogawa, J. Polymer Sci., Part A, General Papers, 1965, **3**, 3865; International Symposium on Macromolecules, Prague, 1965.

² E. H. M. Ibrahim and R. A. Shaw, unpublished results.

³ S. Trippett, J. Chem. Soc., 1962, 4731.