
cis-trans-Isomerism in N-Arylformamidinium Salts

By KEITH M. WELLMAN and DAVID L. HARRIS

(Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214)

THERE is now a number of examples of geometrical isomerism about single and double bonds in which the isomer with the larger groups *cis*-oriented predominates.¹ The cause of this thermodynamically preferred *cis*-orientation is not settled. We report here an example of *cis*-trans-isomerism which is highly sensitive to electrical effects in the substituents.

Protonation of NN'-disubstituted formamidines occurs on the imino-nitrogen, giving a conjugate acid which can exist in either a *trans*-(I) or *cis*-(II) configuration. Nuclear magnetic resonance (n.m.r.) spectra of these formamidines in trifluoroacetic acid (TFA) give distinguishable signals for which is not present in the N-aryl-N'-t-butylformamidinium salts. Nevertheless, the substituent effect is similar in both series. The equilibrium constants for *meta*- and *para*-substituted compounds are correlated by a Hammett plot which yields ρ -values of -0.75 (r = 0.917) and -0.83 (r = 0.989) for the diaryl and aryl, and tbutyl series, respectively. The effect of electrondonating groups in stablizing the *cis*-configuration is also mirrored in the methyl-substituted arylformamidines which show an increase in the *cis*isomer populations as the number of methyl groups increases (see Table). *ortho*-Alkyl groups are particularly effective.

he protons H_a-H_e which can be assigned on the basis of line shape and coupling constants (e.g., $J_{\text{HaHb}} \simeq J_{\text{HcHe}} \simeq 14$, $J_{\text{HdHe}} \simeq 6$ c./sec.; Ha, Hc, and H_d are doublets broadened by quadrupole coupling, H_b is a triplet, and H_e is a quartet). Steric interaction between the endo*-aryl and NH_c groups in (II) will force the aryl ring to orient such that H_c lies above the aryl- π system. Accordingly, H_c shows an upfield shift of about one p.p.m. relative to the H_a resonance because of the ring anisotropy. Integration of appropriate n.m.r. signals provides a ready measure of the equilibrium concentrations of (I) and (II). In the case of R = t-butyl, the large steric requirements of the t-butyl group force it to take up the exo*-position in all cases (see below).

The results (Table) show a striking aryl-substituent effect upon the equilibrium. In the case of the symmetrically substituted salts, the *cis*configuration is favoured by an entropy factor

The striking substituent dependence rules out a simple steric effect. This conclusion is emphasized by the finding that the conjugate acid of NN'-di-tbutylformamidine exists wholly in the trans-configuration in aqueous acid and TFA. A tempting hypothesis, which is consistent with the foregoing observations, is that there exists an attractive N-H_c · · · π -interaction. Such interactions are known to be sensitive to steric and substituent effects.² However, this interaction cannot be of overriding significance because it is found that in the N-2,6-dimethylaryl-N'-t-butylformamidine series, the equilibrium is essentially independent of substituent effects varying from 85-90% cis- for X=H, 4-Br, 3-NO₂. Therefore, the substituent effect appears to be associated with a resonance interaction of the coplanar trans-configuration.

Because of the polar nature of the substituents about the partial C==N bond, it appears likely

* The positions occupied by H_a and H_c will be referred to as the *endo*-positions and those occupied by H_a and R are denoted as the *exo* positions.

TABLE

cis-trans Equilibrium constants for NN'-diarylformamidinium (K) and N-aryl-N'-t-butylformadinium (K') trifluoroacetates

Substituent (X)	K	K'	Substituent (X)	K	K'
Н	1.00	0.48	4-Methoxy	1.90	1.00
3-Acetyl	0.65	0.28	2-Methyl	2.50	$2 \cdot 20$
4-Acetyl	0.25	0.09	3-Methyl	1.10	0.62
3-Trifluoromethyl	0.65	0.25	4-Methyl	1.40	0.68
4-Trifluoromethyl	0.40	0.20	2,4-Dimethyl	$3 \cdot 0$	$2 \cdot 1$
3-Chloro	0.65	0.38	2,6-Dimethyl	large‡	
4-Chloro	0.85	0.32	2,4,5-Trimethyl	large‡	$2 \cdot 4$

† N.m.r. spectra of 10 mole $\frac{9}{10}$ solute in TFA were determined with a Varian A-60 instrument at 38 \pm 2° for the diaryl series and with an HA-60 instrument for the aryl, t-butyl series; equilibrium constants are estimated to be accurate to \pm 0.02 units for the aryl, t-butyl series and \pm 0.10 units for the diaryl series. ‡ In these cases no *trans*-isomer could be detected: $K \ge 20$.

that the cis-configuration is stabilized by favourable dipolar interactions.

(Received, December 29th, 1966; Com. 1031.)

¹ N. L. Owen and N. Sheppard, Proc. Chem. Soc., 1963, 264; H. G. Vicke and E. Franchimont, Chem. Ber., 1964, 97 **602**.

²(a) R. Oda, Z. Yoshida, and E. Osawa, Proceedings of the International Symposium on Molecular Structural Spectroscopy, Tokyo, 1962, D118/1-D118/4; (b) H. Fritzsche, Z. Naturforsch, 1964, 19a, 1132; (c) M. R. Basila, E. L. Saier, and L. R. Cousins, J. Amer. Chem. Soc., 1965, 87, 1665; (d) H. C. Brown and J. H. Melchiore, *ibid.*, p. 5269.,