1,2-Dihydrocyclobuta[b]quinoline

By J. Hodge Markgraf and William L. Scott

(Department of Chemistry, Williams College, Williamstown, Massachusetts, 01267)

We describe the preparation and characterization of 1,2-dihydrocyclobuta[b]quinoline (I), the first heterocyclic analogue of naphthocyclobutene. The first synthesis of this compound was reported by Wilk, Schwab, and Rochlitz, who obtained (I) (6%) from a sealed-tube reaction of anthranil with cyclobutanone in the presence of mercuric sulphate.

We report the preparation of the same compound in good yield via a Friedlander synthesis. Treatment of an ethanolic solution of cyclobutanone and o-aminobenzaldehyde with concentrated potassium hydroxide for 3 days at room temperature afforded (I) (55%) (m.p. 96·5—97·4°; picrate, m.p. 236—237° decomp.). The product was also obtained in 25% yield from the same reactants under the conditions of acid catalysis recently reported² for this type of condensation. Dihydrocyclobuta[b]-quinoline was characterized by its mass spectrum

(molecular ion at m/e 155; peaks at M-15 and M-28 inter alia) and its proton magnetic resonance spectrum (A₂B₂ pattern with multiplets centred at τ 6.47 and 6.87, assigned to the protons of the methylene groups bonded to the α - and β -carbons, respectively).

The most arresting feature of this structure is the effect that the fused, four-membered ring exerts on the basicity of the molecule. For a series of compounds the half-neutralization potentials (HNP) in acetic anhydride at 25° were determined by titration with perchloric acid in acetic acid.³ The

results are given in the Table. It is clear that (I) is at least ten times less basic than comparable compounds that do not contain a fused, strained ring. This constitutes the first observtaion of the influence of such a ring system on an adjacent hetero-atom. That the fused cyclobutene ring also causes abnormal effects in an electronically excited state is evident from the fluorescence data reported by Wilk and co-workers.1

An alternative route to this new ring system was secured by a Pfitzinger reaction, which gave 8carboxy-1,2-dihydrocyclobuta[b]quinoline (II) in 20% yield. Thus, condensation of isatin with cyclobutanone for 1 hr. in refluxing ethanolic potassium hydroxide gave (II) (m.p. 281-282°).† The product, however, did not undergo decarboxylation under a variety of conditions known to effect smoothly the same reaction for the analogous compound containing a fused cyclopentenering.

We thank Dr. D. M. Desiderio for the mass spectrum and Prof. C. P. Lillya for the n.m.r. spectra. This work was supported by a grant from the Petroleum Research Fund, administered by the American Chemical Society.

Basicities of substituted quinolines

Compound	HNP	pK_a*
2,3-Dimethylquinoline	$285~\mathrm{mv}$	5.99
Quinaldine	305	5.70
1,2-Dihydrocyclopenta[b]quinoline	322	5.45
Quinoline	349	5.06
1,2-Dihydrocyclobuta[b]quinoline	384	4.55

* Values are based on the known pK_a 's of quinoline and quinaldine in water and the assumption that the HNP in Ac₂O and pK₃ in water are linearly related (ref. 3).

(Received, February 16th, 1967; Com. 145.)

[†] Satisfactory analyses were obtained for all new compounds.

¹ M. Wilk, H. Schwab, and J. Rochlitz, Annalen, 1966, 698, 149.

² E. A. Fehnel, *J. Org. Chem.*, 1966, **31**, 2899. ³ C. A. Streuli, *Analyt. Chem.*, 1958, **30**, 997.