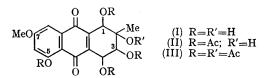
307


Altersolanol A, a Novel Tetrahydroanthraquinone

By A. Stoessl

(Research Institute, Canada Department of Agriculture, London, Ontario)

CULTURE filtrates of Alternaria solani yield substantial amounts of a pigment, altersolanol A (I), m.p. 218° dec., $[\alpha]_D^{23} - 290°$ (c 0.25 in pyridine), and constitution $C_{16}H_{16}O_8$ (elemental analysis in conjunction with evidence below). The u.v. spectrum $[\lambda_{max}(EtOH) 422, 285 \text{ (inf)},$ $268, 240, 219 m\mu (log <math>\epsilon$ 3.65, 3.84, 4.15, 3.96, 4.57)] is very similar to that reported¹ for the "quinone A monomethyl ether" from protoaphin fb. The i.r. spectrum has ν_{max} (KBr) 1671 (m, free quinone CO), 1635 (hydrogen-bonded quinone CO), 1603, and 1595 (hydrogen-bonded CO and C=C) cm.⁻¹. The n.m.r. spectrum (Table) reveals the presence of an aromatic methyl ether, two *meta*-coupled aromatic protons, a moderately deshielded *C*-methyl group not coupled to hydrogen, and the similarly isolated systems \cdot CH(O-) \cdot CH(O-) \cdot and \cdot CH(O-) \cdot . Other protons, subject to deuterium exchange and not shown in the Table, absorb at $\tau - 2.17$ (s, sharp, 1H), ca 4.33 (d, broad, 1H), and 4.9-5.8 (m, 3H, superimposed on the other signals) and are due to a chelated phenol and four alcoholic hydroxyls respectively. The assignments were confirmed as Altersolanol A in pyridine-acetic follows. anhydride forms a tetra-acetate [(II) m.p. 188- 192° with prior charring] which retains an alcoholic hydroxyl $[v_{max} (CCl_4) 3,600 (w, sharp), 3,500 (s,$ broad) cm.⁻¹, τ 7·1 (broad, 1H, exchangeable)]. In contrast, a penta-acetate [(III) m.p. 169-173°, molecular weight found (osmometer): 534, required by C₂₆H₂₆O₁₃: 546.5], obtained from (I) or (II) with acetic anhydride-perchloric acid, lacks hydroxylic absorption. The two acetates have virtually identical u.v. spectra $[\lambda_{max}$ (EtOH) 383, 266, 210 m μ (log ϵ 3.34, 4.31, 4.48)] while the n.m.r. signals due to acetoxyl (Table) are

On sublimation *in vacuo* at 120—150°, altersolanol A affords, as principal product, an orange compound $C_{16}H_{12}O_6$, m.p. 265—267°, which was defined as 3,4,5-trihydroxy-7-methoxy-2-methylanthraquinone (IV) by its u.v. $[\lambda_{max}$ (EtOH) 425, 312, 280, 258, 229 m μ (log ϵ 4.03, 4.00, 4.43, 4.16, 4.36)] and n.m.r. spectra [very broad absorption (3H) at $\tau - 2.5$ to -0.8, consistent with the system $\cdot C(OH) : C(OH) \cdot CO \cdot C(OH) \cdot$; other signals in Table]. Methylation (Me₂SO₄-K₂CO₃) of (IV) gives (V) which has the m.p. and u.v. spectrum reported² for 3,4,5,7-tetramethoxy-2-methylanthraquinone.

					IABLE	;			
τ -Values of nonexchangeable protons ^a									
			Area	Mult.	J_{AB}	(I) 	(II)¢	(III)°	(IV) ^b
H^1	••	••	1	S		5.62	3.81	2.83	2.77
H^3			1	d	7.5	6.13	4.65	4.47	
H^4			1	d	7.5	5.46	3.71	3.70	
H6			1	d	2.75	3.28	3.19	3.12	3.47
\mathbf{H}^{8}			1	d	2.75	3.07	2.61	2.47	3.12
OMe			3	s		6.32	6.12	6.03	6.17
CMe			3	s		8.69	8.72	8.41	7.85
	MeCO ₂ Ar		3	s			7.65	7.62	
MeCO	MeCO ₂ R		3	s			7.87	7.81	
			3	s			7.91	7.87	
			3	S	<u> </u>		7.97	7.94	
			3	s				8.02	

Tint

^a To tetramethylsilane as internal reference.

^b In (CD₃)₂SO.

• In CDCl,.

in obolg.

clearly grouped as phenolic (one each) and saturated (three and four respectively). Further, the n.m.r. spectra show downfield shifts, relative to (I), for only three protons and the *C*-methyl group has remained nonaromatic. The additional acetoxyl group of the penta-acetate must therefore be tertiary. The formation of the penta-acetate cannot involve a rearrangement because, on treatment with 0.05N-aqueous sodium hydroxide at room temperature, it yields (I) as a major product, together with aromatization products of (I). These facts require that altersolanol A be represented by (I). A discussion of its stereochemistry is reserved for the full Paper which will also report on several co-metabolites. One of these has the properties described³ for macrosporin (3,5-dihydroxy-7-methoxy-2-methylanthraquinone); another, altersolanol B, is closely related to altersolanol A.

(Received, February 20th, 1967; Com. 165.)

- ² L. H. Briggs, F. E. Jacombs, and G. A. Nicholls, J. Chem. Soc., 1953, 3069.
- ³ R. Suemitsu, M. Nakajima, and M. Hiura, Agric. and Biol. Chem. (Japan), 1961, 25, 100, and references cited.

¹ D. W. Cameron, R. I. T. Cromartie, D. G. I. Kingston, and Lord Todd, J. Chem. Soc., 1964, 51.