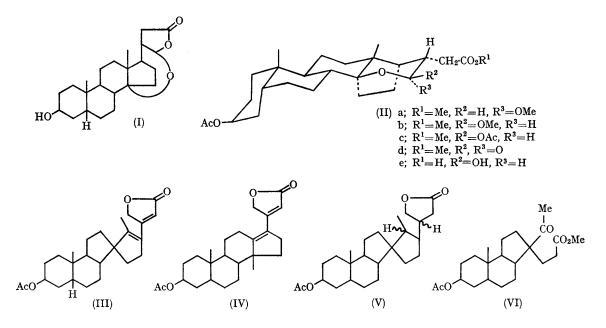
C-Norcardenolides¹


By T. R. KASTURI, G. R. PETTIT, and J. OCCOLOWITZ

(Department of Chemistry, Arizona State University, Tempe, Arizona 85281)

IN preceding contributions, we recorded new syntheses of cardenolides and isocardenolides.² We now report a convenient and unique route to the previously unknown c-norcardenolides.

Heating a solution of isodigitoxigenin (I) (0.5 g.)³ in methanol (50 ml.) containing toluene-*p*sulphonic acid (0.05 g.) and water (2.5 ml.) under reflux for 20 hr. gave acetals* (IIa) (0.22 g.), m.p. 194—196°, $[\alpha]_D - 75°$, n.m.r. 1.02 and 1.05 (angular CH₃), 3.32 (21 α -OCH₃), 3.68 (22-CO₂·CH₃), and 4.73 (21 β -H; J = 5.5 c./sec.) δ and (IIb) (0.15 g.) m.p. 142—144°, $[\alpha]_D + 9.03°$, n.m.r. 1.08 and 1.12 (angular CH₃), 3.45 (21 β -OCH₃), 3.68 (22-CO₂·CH₃), and 4.23 (21 α -H; J = 8 c./sec.) δ . The acetals were separated (after acetylation, 3:1 pyridine-acetic anhydride, room temperature) by treated with methanol containing a trace of hydrobromic acid (to form the acetal) and then acetylated (3:1 pyridine-acetic anhydride, room temperature) to yield acetals (IIa and IIb). Oxidation of either acetal with CrO_3 in glacial acetic acid gave lactone (IId),⁴ m.p. 137—138°, $[\alpha]_D - 28^\circ$, n.m.r. 1·02 and 1·13 (angular CH_3), and 3·69 (22-CO₂·CH₃) δ . Ease of oxidation in the case of acetal (IIa) compared to acetal (IIb) combined with a consideration of their H-20-H-21 n.m.r. coupling constants⁵ support the assigned stereochemistry.

Heating (10 hr.) a solution of either acetal (IIa or IIb) (0.2 g) in benzene containing toluene-*p*-sulphonic acid (0.04 g.) under reflux for 10 hr. gave c-norcardenolide (III) (0.12 g.), m.p. 164—165°,

column chromatography on basic alumina. Methanolysis of known⁴ diacetate (IIc) also gave acetal (IIa). Further, acetals (IIa and IIb) were obtained as follows: isodigitoxigeninic acid (IIe),³ obtained by hydrolysis of isodigitoxigenin (I) with aqueous potassium hydroxide in methanol was esterified (diazomethane). The ester was $[\alpha]_{\rm D}$ +36.35°, M (by mass spectrometry) 398, $\lambda_{\rm max}$ 288 m μ (ϵ 22,760), i.r. (CHCl₃) 5.58, 5.73, and 6.16 μ , n.m.r. 0.98 (19-CH₃), 1.82 (18-CH₃), 2.07 (CH₃·CO₂), 5.1 (21-CH₂), and 5.82 (22-H) δ . Under the same reaction conditions digitoxigenin yields 14-dehydrodigitoxigenin as the almost exclusive product. The alternative structure (IV)

* All new compounds gave satisfactory elemental analyses. Optical rotations were measured in $CHCl_{g}$ and u.v. spectra in 95% ethanol solution. N.m.r. spectra were obtained with a Varian A-60 spectrometer ($CDCl_{g}$ as solvent and tetramethylsilane as internal standard).

was ruled out on the basis of hydrogenation and ozonolysis experiments. Hydrogenation (glacial acetic acid, 5% palladium-barium sulphate) of (III) gave a tetrahydro-lactone (V), m.p. 200-215°, $[\alpha]_D$ +18.8°, i.r. (CHCl₃) 5.65 and 5.8 μ , and n.m.r. 0.78 (18-CH₃ doublet, J = 7 c./sec.), 0.95 (19-CH₃), 2.07 (3 β -acetate), 5.08 (3 α -H) δ . Ozonolysis of olefin (III) at -70° in ethyl acetate, followed by an oxidation (hydrogen peroxidehydrochloric acid-acetic acid)⁶ and a methylation (diazomethane) step provided keto-ester (VI), b.p. 120-125°/0.1 mm. (sublimation temp.), i.r. (neat), 5.75 (ester), and 5.8 μ (CO·CH₃) and n.m.r. 0.94

 $(19-CH_3)$, $2.05 (3\beta-CH_3\cdot CO_2)$, $2.14 (CO\cdot CH_3)$, 3.67 $(CO_2 \cdot CH_3)$ and 5.08 $(3\alpha \cdot H)\delta$. The mass-spectral fragmentation patterns of (III) and (V) are also in accordance with the structure assigned.

The C-12 \rightarrow C-14 methylene migration[†] is in contrast to the usual methyl group migration reported for Westphalen rearrangements' involving the steroid A/B-ring-functions.

This work was supported by grants from the Public Health Service and the National Cancer Institute.

(Received, December 21st, 1966; Com. 1019.)

† A similar methylene migration has been suggested by Reichstein and his co-workers (ref. 8). The Westphalen rearrangement is being re-investigated by us in the light of these observations.

¹ Steroids and related natural products, Part XXXIX. For Part XXXVIII, see J. C. Knight and G. R. Pettit, Chem. Comm., 1966, 735.

² Cf., G. R. Pettit and J. P. Yardley, Chem. and Ind., 1966, 553; G. R. Pettit, B. Green, A. K. Das Gupta, and G. L. Dunn, Experientia, 1964, 20, 248.
 ³ W. A. Jacobs and E. L. Gustus, J. Biol. Chem., 1928, 78, 573.
 ⁴ O. Schindler and T. Reichstein, Helv. Chim. Acta, 1956, 39, 1876.
 ⁵ C. Dischi, D. M. Facultar, M. Krenge and C. E. Mitchell, J. Annu. Chem. 51, 1066, 88, 4524.

- ⁶ G. Büchi, D. M. Foulkes, M. Kurono, and G. F. Mitchell, J. Amer. Chem. Soc., 1966, 88, 4534.
 ⁶ W. S. Johnson, W. A. Vredenburgh, and J. E. Pike, J. Amer. Chem. Soc., 1960, 82, 3409.
- ⁷ (a) C. R. Narayanan and K. N. Iyer, Tetrahedron Letters, 1966, 285; (b) O. R. Rodig, P. Brown, and P. Zaffaroni,

J. Org. Chem., 1961, 26, 2431; (c) G. Snatzke and H. W. Fehlhaber, Annalen, 1964, 676, 188; (d) A. Fischer, M. J. Hardman, M. P. Hartshorn, D. N. Kirk, and A. R. Thawley, Tetrahedron, 1967, 23, 159.

⁸ A. Lardon and T. Reichstein, Helv. Chim. Acta, 1962, 45, 943.