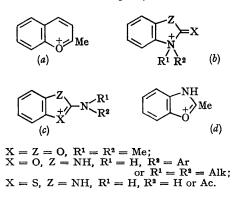
The Formation of a Five-membered-ring Ion on Electron Impact

By M. A. BALDWIN, A. G. LOUDON, ALLAN MACCOLL, and D. SMITH


(William Ramsay and Ralph Forster Laboratories, University College, Gower Street, London, W.C.1)

and A. RIBERA

(Instituto de Quimica "Alonso Barba," Serrano 119, Madrid, Spain)

RECENTLY as part of a general programme¹ we have investigated the behaviour under electron impact of phenyl- and substituted phenyl-ureas, thioureas, and carbamates.³ In the compounds having a substituted phenyl residue with orthochlorine atoms, a large M—Cl ion is observed (see Table). However, when the substituted phenyl residues have only meta- or para-chlorine atoms, then the M—Cl ion is less than 0.5%, as observed for some thirty compounds.

Thus a particular mechanism must be operating in the case of the *ortho*-chloro-compounds. Any electronic effect might be expected to work for both the *ortho*- and *para*-positions. Since this is not the case, this leaves as the most likely explanation the formation of a cyclic ion similar to those reported by Williams³ and by Waight.⁴ In both these cases six-membered-ring ions with a conjugated carbonyl group were postulated. The simplest case was that of methyl cinnamate where the large M-1 ion was thought to have the structure (a).

In the present case, a six-membered ring is impossible and since all the monochloroanilines show an M-Cl ion of similar intensity, a threemembered ring can be ruled out. This leaves the possibility that the ring formation involves either the remote nitrogen (b) or more likely the thiocarbonyl or carbonyl grouping (c).

$Compounds: o-CI-C_6H_3(R)-NH-CO-N(R)_2$					
R	R′	(M-Cl) %	(M-Cl)/M		
Н	Me	36	4.5		
4-Me	Me	38	3.6		
5-Cl	Me	24	7.5		
6-Me	\mathbf{Me}	62	12.3		
4-Me	Et	33	1.8		
5-Cl	Et	25	4.9		
5-Cl	n-Pr	19	3.4		

Compounds:	$o\text{-}\mathrm{Cl}\text{\cdot}\mathrm{C}_{6}\mathrm{H}_{3}(\mathrm{R})\text{\cdot}\mathrm{N}\mathrm{H}\text{\cdot}\mathrm{CO}\text{\cdot}\mathrm{N}(\mathrm{R}')_{2}$	

Compounds: o-Cl-C ₆ H ₄ ·NH·CS·NHR'				
R′	(M-Cl) %	(M-Cl)/M		
\mathbf{H}	100	>100		
Ac	31	>100		

To help decide between the ions (b) and (c), the mass spectra of the acetates of the three monochloroanilines were determined. The ortho-compound still showed a large M-Cl ion which was not shown by the meta- or para-compounds. This presumably must be (d) which suggests that (c) is a possible representation in the other cases but does not exclude (b) as a further possibility.

In the ureas this phenomenon seems to be effectively restricted to the loss of an ortho-chlorine atom. Thus in the phenyl- and substituted phenyl-ureas not containing an alkylated nitrogen, the M-1 ion is less than 0.5%. So the loss of an ortho-hydrogen by this mechanism is very small. Similar remarks apply to ortho-methyl- and -methoxy-substituents. This discrimination may be due to the relative weakness of the carbonchlorine bond.

16

8.4

In contrast to the arylureas, the phenyl-, the two diphenyl- and the triphenyl-thioureas all show noticeable (5-10%) M-1 ions, presumably due to the formation of the ion (c). The easier formation of this ion in the case of the sulphur compounds is reflected in the more pronounced M-Cl ion in the spectra of the two o-chlorophenylthioureas. Other substituents remain to be investigated.

Thus the formation under electron impact of a five-membered-ring ion in these compounds has been demonstrated. This, apart from one possible example,⁵ is believed to be the first example of such a five-membered ring.

(Received, February 22nd, 1967; Com. 169.)

¹ M. A. Baldwin, A. Kirkien-Konasiewicz, A. Maccoll, and B. Saville, Chem. and Ind., 1966, 286; M. A. Baldwin, A. Kirkien-Konasiewicz, A. G. Loudon, A. Maccoll, and D. Smith, Chem. Comm., 1966, 574.

² J. B. Thompson, P. Brown, and C. Djerassi, J. Amer. Chem. Soc., 1966, 88, 4049.

³ D. H. Williams in "Newer Physical Methods in the Study of Structural Chemistry," Laboratory Practice, London, 1967.

⁴ E. S. Waight, ref. 3.

⁵ J. Ronayne, D. H. Williams, and J. A. Bowie, J. Amer. Chem. Soc., 1966, 88, 4980.

35	1
----	---

-					
т	Α.	R	I.	TP.	

5-Cl

Compounds: o-Cl-C ₆ H ₃ (R)·NH·CO·NH·C ₆ H ₃ R'R"				
R	R'	R″	(M-Cl) %	(M-Cl)/M
н	H	н	8.5	0.5
6-Me	н	н	32	2
н	2-Me	н	5.3	0.3
н	2-Cl	н	7.9	0.9
н	2-MeO	н	3.8	0.1
3-Cl	2-Cl	3-C1	3.6	1.0
5-Cl	2- C1	5-Cl	11	$2 \cdot 4$
6-Me	2-C1	6-Me	50	17
Compounds: o-Cl-C ₆ H ₃ (R)O·CONMe ₂				
R $(M-Cl)$ % $(M-Cl)/M$				
:	3-Cl `	7.4	25	
(3-C1	1.8	$2 \cdot 3$	