Long-range Spin-Spin Coupling in Tolyl-lead Compounds

By W. KITCHING, V. G. KUMAR DAS, and P. R. WELLS (Chemistry Department, University of Queensland, Brisbane, Australia)

WITH the notable exception of some organothallium derivatives,¹ spin-spin coupling between aromatic protons and metal-containing substituents has not been reported. There have in fact been few ¹H nuclear magnetic resonance studies on arylmetal compounds.²

Solubility problems notwithstanding, the *p*-tolyl-lead compounds are ideal subjects for a preliminary examination of the magnitude and sign of some of the spin-spin coupling constants. Since the *meta* and *para* proton-proton coupling constants are small, the AA'BB' aromatic proton spectrum approximates fairly closely to an AB spectrum and some of the satellites arising from ²⁰⁷Pb of natural abundance 21.1% are clearly visible.

The results tabulated were obtained employing an AB analysis for the main aromatic proton spectrum and an ABX analysis, where $X = {}^{207}Pb$, for the satellites. Not all of the AB lines of the ABX spectra are visible, but from the 60 Mc./sec. and 100 Mc./sec. spectra together with the values of ν_{AB} , J_{AB} , $\nu_{A} - \nu_{B}$ from the main spectrum, unique values for J_{AX} and J_{BX} can be obtained.

FIGURE. ¹H n.m.r. spectra of tetra-p-tolyl-lead in $CDCl_3$ solution: (a) aromatic region at 60 Mc./sec., (b) at 100 Mc./sec., (c) methyl region at 60 Mc./sec.

	$(p\text{-}\mathrm{CH}_3\cdot\mathrm{C}_6\mathrm{H}_4)_4\mathrm{Pb}$					$(p-\mathrm{CH}_3\cdot\mathrm{C}_6\mathrm{H}_4)_6\mathrm{Pb}_2$	
	CDCl ₃		CH ₂ Cl ₂ *		\mathbf{THF}	CDCl ₃	CH,Cl,
	60 Mc./sec.	100 Mc./sec.	60 Mc./sec.	100 Mc./sec.	60 Mc./sec.	60 Mc./sec.	60 Mc./sec.
p -CH ₃ (τ)	7.65	$7{\cdot}69 \pm 0{\cdot}01$	7.67	$7{\cdot}64 \pm 0{\cdot}01$		7.65	7.69
$I(Pb-CH_3)$ (c./sec.)	~ 6	$5{\cdot}40+0{\cdot}3$	~ 6	~6		~ 6	~ 6
$v_{\rm A}(\tau)$	2.48	$2{\cdot}52\stackrel{-}{\pm}0{\cdot}02$	2.52	$2{\cdot}51\pm0{\cdot}02$	2.57	2.51	2.55
$v_{\rm B}(\tau)$	2.77	2.80 + 0.02	2.79	$2 \cdot 75 + 0 \cdot 02$	2.83	2.78	2.85
$ J_{AB} $ (c./sec.)	7.9	7.7 ± 0.5	~7	7.8 ± 0.4	\sim 7.5	8	8
$J_{AX}(c./sec.)$	± 80		± 79		± 80	± 80	
$J_{\mathbf{BX}}(c./sec.)$	± 24		± 25		± 24	± 24	
* CH ₂ Cl ₂ at $\tau 4.68 \pm 0.03$ with $I(^{13}C^{-1}H) = 176.5 \pm 5$ c./sec.							

TABLE

Since the high-field half-spectrum, *i.e.*, proton B, is broadened relative to the low-field half-spectrum, we identify this as the proton *ortho* to the methyl group. Its τ -value is essentially that corresponding to the aromatic protons of toluene. Proton A shows the result of a small low-field shift due to the lead substituent.[†] The ²⁰⁷Pb-¹H coupling constant is largest for proton A which is *ortho* to the metal and both coupling constants have the same sign. Most noteworthy is $J(^{207}\text{Pb-CH}_3)$ arising from an interaction which formally traverses *six* covalent bonds. It is of some interest that both the aromatic proton chemical shifts and the coupling constants are almost unaffected by the change from the Ar_4Pb to the Ar_6Pb_2 species. There also appears to be essentially no solvent effect, although this needs to be probed for a wider range of solvent types. We are currently examining a series of substituted phenyl derivatives of lead, mercury, and tin to gather further information in this area.

(Received, March 6th 1967; Com. 211.)

 \dagger Bearing in mind the electropositive character of the metal a small *high*-field shift might have been expected. Presumably the low-field shift is to be ascribed to the paramagnetic shielding observed by Drago and Matwiyoff in tetramethyl-lead (ref. 3).

¹ J. P. Maher and D. F. Evans, J. Chem. Soc., 1963, 5534.

² cf., M. L. Maddox, S. L. Stafford, and H. D. Kaesz, Adv. Organometallic Chem., 1965, 3, 1.

³ R. S. Drago and N. A. Matwiyoff, J. Organometallic Chem., 1965, 3, 62.