Electronic Structures of π -Complexes of Heteroaromatic Systems

By DAVID A. BROWN and C. G. MCCORMACK (Department of Chemistry, University College, Belfield, Dublin 4, Ireland)

The recent isolation of tricarbonyl- π -hexamethylborazinechromium¹ prompts us to report some simple molecular-orbital calculations of the delocalization energies of various arene- and borazinechromium metal-ring bond strengths in π -complexes of a series of substituted borazines and benzenes and led one of us² to suggest that complexes of the former might occur.

The simple molecular-orbital theory of organometallic molecules has been reviewed recently,² so only the ring-metal delocalization energies are compared in the Table.³ In all cases the chromium atom was assumed to lie on the 3 (or 6)-fold symmetry axis of the borazine or benzene and the Cr-ring atom distance was taken as $2\cdot23$ Å as observed in tricarbonyl- π -hexamethylbenzenechromium.⁴ A B-N distance of 1.44 Å was assumed in all the borazines. The nature of substituent effects (methyl and chloro) in equivalently-substituted benzenes and borazines and the appropriate Coulomb terms (H_{ii}) required to calculate the π -electron energies of these molecules have recently been discussed by us.⁵ In the

* Rference 2 and references therein.

present comparative calculations, approximation (1) of reference 5 was used; that is, the following δ values were used:

$$\begin{split} \delta_{B} &= -0.7989, \qquad \delta_{N} &= +0.7989 \\ \delta_{Me} &= -0.6800, \qquad \delta_{C1} &= +0.2271 \end{split}$$

where, for example, $H_{BB} = H_{CC} + \delta_B \beta_{CC}$.

The metal-ring interaction energies were then calculated with the usual assumption* that the resonance integral H_{ij} could be expressed as:

$$H_{ij} = kG_{ij}$$

where the group overlap integrals, G_{ij} , were calculated from the ring π -orbitals (calculated on the above approximation) and assuming Slater functions for the chromium(0) 3d, 4s, and 4p orbitals; this is a correct procedure for a comparative calculation of Cr-ring energies. The respective Coulomb terms of the ring orbitals were obtained by identifying the highest occupied π -orbital with

Complex		k = 3.0 ev	k = 5.0 ev	k = 7.0 ev	k = 9.0 ev
Benzene		1.72	4.30	7.50	11.23
Hexamethylbenzene		3.41	6.42	9.85	13.25
1,3,5-Trimethylbenzene		1.92	4.62	7.89	11.78
1,3,5-Trichlorobenzene		1.66	4.17	7.32	10.92
1,3,5-Trichloro-2,4,6-trimethylbenzer	ne	1.75	4.32	7.49	11.21
Borazine		1.23	3.27	6.01	9.25
Hexamethylborazine		1.45	3.68	6.55	9.95
B-Trimethylborazine		1.09	2.90	5.38	8.36
B-Trichloroborazine		1.04	2.81	5.27	8.22
B-Trichloro-N-trimethylborazine		1.61	4.09	7.27	10.98
N-Trimethylborazine	••	1.56	3.98	7.09	10.72

TABLE Delocalization energies of the complexes (ev)

the observed ionisation potential⁵ and the metalorbital energies from the observed ionisation potential of chromium(0) and the mean d-p and d-s separations as given in Moore's tables.⁶

The total π -electron energy of the ring-metal system was then calculated assuming a total of 12π -electrons to be accommodated. The delocalization energy was obtained by subtracting from this figure the sum of the Cr^0 $(3d^44s^2)$ orbital energies and the ring π -electron energy. The results are given in the Table for a reasonable variation in the proportionality constant, k.

In all cases the interaction energy of a borazinechromium system is less than that of the corresponding benzene-chromium system so borazine complexes of either a "sandwich" or "half-sandwich" type might be expected to be the less stable. However, of the proposed borazine complexes, that formed by hexamethylborazine has a reasonably large delocalization energy and so its existence may be inferred. Our calculations also suggest that a number of other borazine complexes may also occur, notably from N-trimethylborazine and Btrichloro-N-trimethylborazine.

(Received, March 7th, 1967; Com. 223.)

¹ R. Prinz and H. Werner, Angew. Chem. Internat. Edn., 1967, 6, 91.

² D. A. Brown "Transition Metal Chemistry", Vol. III, Marcel Dekker Inc., New York. ³ Full details are given in the thesis "Studies on Heteroaromatic Complexes", C. G. McCormack, National University of Ireland, 1966.

⁴ M. F. Bailey and L. F. Dahl, Inorg. Chem., 1965, 4, 1298.

⁵ D. A. Brown and C. G. McCormack, *Theor. Chim. Acta.*, 1966, 6, 350. ⁶ C. E. Moore, "Atomic Energy Levels", Nat. Bur. of Standards, Circular No. 467, Vol. III. U.S. Govt. Printing Office, Washington D.C. 1951.