The Crystal Structure of Zirconium(IV) Borohydride (at -160°)

By PETER H. BIRD and MELVYN R. CHURCHILL

(Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138)

SEVERAL simple transition-metal borohydrides have been characterized, but no unequivocal determination of their stereochemistry has been reported.¹ The stoicheiometry of zirconium borohydride has been established² as $Zr(BH_4)_4$, but the number of bridging hydrogen atoms from each borohydride ligand has not been directly ascertained, although it is customarily assumed that *two* hydrogen bridges link the boron to the central metal atom. [¹H and ¹¹B n.m.r. studies are not helpful in resolving this problem, because of exchange processes.¹] The infrared spectrum of $Zr(BH_4)_4$ has been reported, and has been interpreted¹ in terms of molecular D_{4d} (or D_{4h}) symmetry (*i.e.*, a square-planar arrangement of boron atoms about the zirconium).

In order to obtain direct information on the stereochemistry of $Zr(BH_4)_4$, a complete threedimensional single-crystal X-ray structural analysis of the compound has been undertaken. The structure was solved by conventional Fourier and least-squares refinement techniques, the present discrepancy index being R = 6.55% for 100 independent reflections ($\sim 90\%$ of the observable sphere) collected on film from a crystal maintained at -160° c. The compound crystallizes in the cubic space group P43m (no. 215) with a = 5.86 Å and Z = 1. Thus, provided there is no disorder, the molecule must possess the full T_d (43m) symmetry of the space group. The refined structural analysis confirms the T_d symmetry of the molecule. The zirconium atom is tetrahedrally surrounded by four crystallographically equivalent boron atoms $(Zr \cdots B = 2.34 \pm 0.03 \text{ Å})$, the symmetry of the space group requiring that each $Zr \cdot \cdot \cdot B$ vector is coincident with a C_3 axis. A single terminal hydrogen atom has been located on

this threefold axis ($Zr \cdots B-H = 180^\circ$, $B-H = 1\cdot 2 \pm 0\cdot 4$ Å*).

Although diffraction ripples in the vicinity of the zirconium atom preclude the reliable location of bridging hydrogen atoms on the electron density map, it is apparent that there are *three* such atoms associated with each borohydride ligand. Thus (at -160°) the zirconium atom is surrounded by twelve bridging hydrogen atoms, as is shown in the Figure.

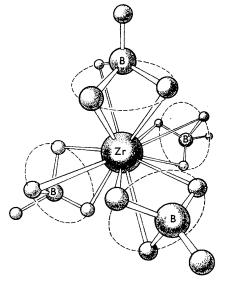


FIGURE. One of the possible ordered arrangements of borohydride groups about the zirconium atom. [The other possibility involves the rotation of each set of bridging hydrogen atoms by 60° .]

(Received, March 17th, 1967; Com. 263.)

* Although there is a large estimated standard deviation on this parameter, the location of this terminal hydrogen atom is definite. It has appeared on each observed and difference Fourier throughout the analysis.

¹ B. D. James, R. K. Nanda, and M. G. H. Wallbridge, *J. Chem. Soc.* (A), 1966, 182, and references therein. ² H. R. Hoekstra and J. J. Katz, *J. Amer. Chem. Soc.*, 1949, 71, 2488.

403