Biosynthesis of Colchicine: Ring Expansion and Later Stages. Structure of Speciosine

By A. C. BARKER, A. R. BATTERSBY, E. McDONALD, R. RAMAGE, and (the late) J. H. CLEMENTS (The Robert Robinson Laboratories, University of Liverpool, Liverpool 7)

COLCHICINE (X) was recently shown¹ to be biosynthesised from 1-phenethylisoquinolines by way of the dienone (IV) which is formed in turn from the base (I). It was suggested¹ that colchicine is then derived by hydroxylation of the dienone (IV) to yield (V; X = H), homoallylic assistance² of ionisation, probably involving the phosphate (V; X = phosphate) followed by the illustrated fragmentation (VI). On this basis, demecolcine (VIII) which is also present in *Colchicum* plants should be a precursor of colchicine. Experimental support for this sequence is now outlined.³

The racemic base (as I), as its OO-dibenzyl ether labelled with ³H at C-1 and at the ring A O-methyl groups, was resolved with OO-dibenzoyltartaric acid. The (-)-form showed a positive Cotton effect⁴ in the region 295—270 m μ proving that it has the illustrated S-configuration (as I) which corresponds to that of colchicine;⁵ the optical rotatory dispersion curve was kindly determined by Professor W. Klyne and Dr. P. M. Scopes. Debenzylation of the (-)- and (+)-forms afforded the diphenol (I) and its enantiomer. Only the former was an effective precursor of colchicine in *C. byzantinum* plants (Table, Expt. 1, 0.53% incorp.); the incorporation of the enantiomer of (I) was <0.015%. Isolation of ring A from the radioactive colchicine as 3,4,5-trimethoxyphthalic acid allowed the labelling ratio in the alkaloid to be determined (Table). This showed some loss of ³H-activity from C-1 of (I) but oxidation-reduction is less important in *C. byzantinum* than in the opium poppy.⁶

The biosynthetic scheme requires (a) retention of the N-methyl group of (I) in demecolcine (VIII) and its loss when colchicine is formed (b) loss of C-3 from (I) when it is converted into colchicine. Separate experiments (cf., ref. 1) proved that the

TABLE. Tracer results from precursor (I)

Expt. No. and chirality	Position and level of labelling	Ratio in precursorª	Ratio in demecolcine (VIII)	Ratio in colchicine (X)
1. (—)	$\begin{cases} 1, {}^{3}\text{H} (8.2) \\ \text{ring A, } 2 \times \text{OCH}_{2}{}^{3}\text{H} (1.0) \end{cases}$	8·2, ³H∕³H	Ь	5·3 (65% retention)
2. (±)	$\begin{cases} N.^{14}C-Me & (0.097) \\ 9.^{14}C & (0.099) \\ ring A, 2 \times OCH_2{}^{3}H & (1.0) \end{cases}$	0·196, ¹⁴ C/ ³ H	0·187 (91% retention)	0.107
3. (±)	$\begin{cases} 3.^{14}C \ (0.137) \\ 9.^{14}C \ (0.105) \\ ring C, OCH_2^{3}H \ (1.0) \end{cases}$	0·242, ¹⁴ C/ ³ H	b	0.126
4. (±)	$\begin{cases} 4^{-3}H (11.0) \\ 9^{-14}C (1.0) \end{cases}$	11·0, 3H/14C	b	4·78 (44% retention)

^a The figures record the ratio of activity relative to the internal standard of ¹⁴C or ³H; the activity of the standard is set arbitrarily as 1.00. ^b Not examined.

O-methyl groups of (I) are retained quantitatively throughout the biosynthesis. This allows the values quoted in the Table to be calculated (Expt. 2 and 3) and the experimental results are close to those required. Colchicine from Expt. 2 and 3 was hydrolysed and the acetic acid formed carried <1%of the original activity in each case. Slightly more ¹⁴C-activity is retained by the colchicine in Expt. 2 and 3 than required by complete loss of the Nmethyl and C-3, respectively, and this arises by some "feed-back" of activity from the cleaved fragments through the plant's biosynthetic system. Thus, degradation of colchicine from Expt. 3 showed that the tropolone O-methyl group and ring A with its attached atoms together carry 14C

activity corresponding to 15.4% of the total. Hydroxylation of (IV) to generate (V, X = H) could be (a) stereospecific (b) non-stereospecific (c) via the corresponding ketone. The corresponding retentions of ³H for Expt. 4 should be, respectively, (a) 50% (b) ca. $85\%^7$ (c) 0% and the Table shows agreement with (a).

Demethylation⁸ of colchicine from Expt. 2 gave O-acetyl-1-desmethylcolchicine (XI; ¹⁴C:H³ ratio 0.22:1); the structure of (XI) was confirmed by n.m.r. studies. Half the ³H activity present in colchicine is lost in the demethylation step which establishes para-coupling of (I) to yield (II). No loss of ³H activity would be observed had orthocoupling occurred to generate (III).

Late stages of the biosynthesis were examined by preparing [3H-O-methyl]demecolcine (VIII) and [³H-O-methyl]colchicine from 3-desmethyldemecolcine⁹ and 3-desmethylcolchicine,⁹ respectively. Desacetylcolchicine (IX) was obtained from the active colchicine by formation (Meerwein's reagent) and hydrolysis of the imino-ether (XII). Feeding experiments with these precursors to C. autumnale plants showed that demecolcine (VIII) and desacetylcolchicine (IX) act as effective precursors of colchicine; the figures after the precursor record the percentage incorporation into demecolcine (or recovery) and into colchicine (or recovery): demecolcine (VIII) 8.8, 13.8; desacetylcolchicine (IX) 1.6, 35.3; colchicine (X) 0, 41.6%. Parallel results were obtained in C. byzantinum plants.

The combined results (cf., ref. 1) define the later stages in the biosynthesis of colchicine as $(I) \rightarrow (II)$ $\rightarrow (\mathrm{IV}) \rightarrow (\mathrm{V}) \rightarrow (\mathrm{VIII}) \rightarrow (\mathrm{IX}) \rightarrow (\mathrm{X}).$ It is probable on chemical grounds that (VI) and (VII) are labile intermediates and the structure of speciosine may be relevant to the imonium salt (VII).

Speciosine is a weak base which occurs¹⁰ in C. speciosum and the molecular formula $C_{28}H_{31}NO_6$ was confirmed by mass spectrometry ($M^+ = 477$). The u.v. and i.r. spectra indicated the presence of a non-phenolic aryltropolone system, as in colchicine, together with an additional phenolic chromophore (bathochromic shift in alkali). Strong peaks were present in the mass spectrum at m/e 207, 107, and 106; the first suggested¹¹ that speciosine is related to demecolcine (VIII) and the last two that a readily cleaved entity, C₇H₇O, is present. Structure (XIII) was therefore considered. The n.m.r spectrum of speciosine confirmed every feature of the demecolcine residue and four additional aromatic protons were observed. One at τ 2.96, corresponding to H_A on ring D, appeared as a double doublet (J = 7 c. and 1.5 c./sec.) in agreement with the illustrated ring D substitution. Structure (XIII) was established for speciosine by treating demecolcine (VIII) with 2-acetoxybenzyl bromide.¹² Hydrolysis of the product gave the phenol (XIII) which was identical with the natural alkaloid. An interesting possibility is that speciosine arises from the intermediate (VII) in a trapping process but this is not the only plausible route. The necessary tracer experiments are in progress.

(Received, March 6th, 1967; Com. 216.)

¹ A. R. Battersby, R. B. Herbert, E. McDonald, R. Ramage and J. H. Clements, Chem. Comm., 1966, 603.

² inter alios, O. L. Chapman and P. Fitton, J. Amer. Chem. Soc., 1963, 85, 41. ³ First reported in part at the I.U.P.A.C. 4th International Symposium on The Chemistry of Natural Products, Stockholm, June, 1966.

⁴ A. R. Battersby, I. R. C. Bick, W. Klyne, J. P. Jennings, P. H. Scopes, and M. J. Vernengo, J. Chem. Soc., 1965, 2239; A. Brossi and F. Burkhardt, Helv. Chim. Acta, 1961, 44, 1558.

- ⁵ H. Corrodi and E. Hardegger, Helv. Chim. Acta, 1955, 38, 2030.

⁶ H. Corrodi and E. Hardegger, Hew. Chim. Acta, 1955, 58, 2030.
⁶ A. R. Battersby, D. M. Foulkes, and R. Binks, J. Chem. Soc., 1965, 3323.
⁷ A. R. Battersby, M. Hirst, and J. Staunton, unpublished work.
⁸ Roussel-UCLAF, Neth. Pat. Appl., 6,412,619 (Cl. 5-07c); (Chem. Abs., 1965, 63, 13339).
⁹ F. Santavý, Coll. Czech. Chem. Comm., 1950, 15, 552; F. Santavý and M. Jalaš, *ibid.*, 1954, 19, 141.
¹⁰ V. V. Kiselev, Zhur. obshchei Khim., 1956, 26, 3218.
¹¹ H. Budzikiewicz, C. Djerassi, and D. H. Williams, "Structure Elucidation of Natural Products by Mass Spectronetry", Holden-Day, San Francisco, 1964, Vol. I, p. 201.
¹² D. L. Fields, J. B. Miller, and D. D. Reynolds, J. Org. Chem., 1964, 29, 2640. metry"