Hexacobalt Hexadecacarbonyl and its Derivatives

By P. CHINI

(Istituto di Chimica Generale ed Inorganica dell'Università, Via Saldini 50, Milano)

Following the recent Communication¹ on some derivatives of the pentadecacarbonylhexacobaltate(-II) anion, $Co_6(CO)_{15}^{2-}$, the isolation of a derivative of the tetradecacarbonylhexacobaltate(-IV), $Co_6(CO)_{14}^{4-}$, and of the hexacobalt hexadecacarbonyl, $Co_6(CO)_{16}$, is now reported.

The $\mathrm{Co_6(CO)_{14}^{4-}}$ anion can be prepared by reduction of $\mathrm{K_2Co_6(CO)_{15}}$ with lithium metal in tetrahydrofuran. The same anion is more easily obtained from $\mathrm{Co_4(CO)_{12}}$ with sodium or lithium metal in tetrahydrofuran at room temperature: the rapidly-formed green-yellow $\mathrm{Co_6(CO)_{15}^{2-}}$ is slowly transformed into the red-brown $\mathrm{Co_6(CO)_{14}^{4-}}$. In all cases alkali tetracarbonylcobaltate($-\mathrm{I}$) is also present.

The salt, $K_4Co_6(CO)_{14}$, was isolated as dark red

crystals, which are soluble in water, but insoluble in tetrahydrofuran. The corresponding sodium and lithium salts are soluble in tetrahydrofuran: these solutions absorb carbon monoxide giving tetracarbonylcobaltate(-I) derivatives. The solutions containing the $\mathrm{Co_6(CO)_{14}^{4-}}$ anion show two main infrared absorptions at about 1890 and 1660 cm. $^{-1}$ and these low wave-numbers are explained by the high ratio between negative charges and the number of CO ligands.

The formation of the Co_6 -carbonyl cluster, either from $[Co(C_2H_5OH)_x][Co(CO)_4]_2$ derivatives¹ or by reaction of $Co_4(CO)_{12}$ with alkali metals, suggests that this Co_6 -cluster is derived by dimerization of the intermediate species $Co_3(CO)_8$. This species can be formed in the first case by

loss of ethanol or in the second case according to the equation:

$$Na + Co_4(CO)_{12} \longrightarrow NaCo(CO)_4 + Co_3(CO)_8$$

Mild oxidising agents, such as FeCl_3 , react with aqueous solutions of $\operatorname{Co_6(CO)_{15}}^{2-}$ or $\operatorname{Co_6(CO)_{14}}^{4-}$ derivatives giving mixtures of carbonyl compounds. Extraction of these mixtures with n-pentane gives at first a fraction consisting mainly of $\operatorname{Co_4(CO)_{12}}$, followed by slow extraction of $\operatorname{Co_6(CO)_{16}}$. The hexacobalt hexadecacarbonyl, obtained as black, air-sensitive crystals, begins to decompose at $100-110^\circ$ and is sparingly soluble in toluene and n-pentane. With basic solvents (such as acetone, methanol, diethyl ether, and pyridine) there is a rapid reaction yielding tetracarbonylcobaltate(-1) derivatives. The infrared spectrum is similar to

that of Rh₆(CO)₁₆, as can be seen from the following data (Nujol mull):

 $\text{Co}_{6}(\text{CO})_{16}$: 2103w, 2061s, 2057sh, 2026w, 2020w, 2018w, 1806w, 1772s,

Rh₆(CO)₁₆: 2105w, 2070s, 2047w, 2040w, 2022mw, 2020mw, 1833w, 1793s,

and probably the two compounds have the same structure. 2

The series $\text{Co}_6(\text{CO})_{16}, \text{Co}_6(\text{CO})_{15}^{2-}$, and $\text{Co}_6(\text{CO})_{14}^{4-}$ provide the first example of the possibility of substituting more than one mole of carbon monoxide with doublets of electrons in cluster-carbonyl compounds. The two anions parallel the recent report on the two hydridocarbonyls, $H_2\text{Ru}_4(\text{CO})_{13}$ and $H_4\text{Ru}_4(\text{CO})_{12}.^3$

(Received, March, 20th, 1967; Com. 265.)

¹ P. Chini, Chem. Comm., 1967, 29.

² E. R. Corey, L. F. Dahl, and W. Beck, J. Amer. Chem. Soc., 1963, 85, 1202.

³ B. F. Johnson, R. D. Johnston, J. Lewis, and N. Robinson, Chem. Comm., 1966, 851.