The ¹H Nuclear Magnetic Resonance Spectra of Methylmercury Compounds

By D. N. FORD and P. R. WELLS*

(Department of Chemistry, University of Queensland, Brisbane, Australia)

and P. C. LAUTERBUR

(Department of Chemistry, State University of New York, Stony Brook, N.Y., U.S.A.)

WHEREAS the ¹H n.m.r. spectra of Me¹⁹⁹HgX, observed as satellites in the spectra of methylmercury compounds, appear as sharp doublets for most X groups, very broad peaks have been reported^{1,2} when X = I. Some broadening is also reported when X = Br and SCN^1 It has been suggested that this phenomenon has its origin in a rapid exchange of methyl groups between the 17% of ¹⁹⁹Hg present and the other mercury isotopes, whose methyl groups are responsible for the main peak in the spectrum. This is presumably a bimolecular process whose rate will be concentration dependent and will increase with temperature. Furthermore, the mean lifetime of methyl groups in the remaining 83% of the mercury compound will be only about five times as great as that for the ¹⁹⁹Hg species, so that the broadening of the satellites of MeHgI should be matched by smaller broadening of the main peak.

Some results obtained by resonance measurements at 100 Mc./sec. and 60 Mc./sec. on pyridine solutions of methylmercury iodide are given in Table 1. The satellite line-widths measured at 60 Mc./sec., although very crude, suggest no marked temperature dependence. Indeed the increase in width would correspond to a bimolecular process having an activation energy less than 2 kcal. mole⁻¹. The spectra obtained at 100 Mc./sec. indicate that there is no concentration dependence of the satellite line-widths except when the solution is saturated and that the main peak is not detectably broadened (tetramethylsilane yields a peak of similar width). It seems clear that methyl group exchange is not responsible for the line broadening.

In the case of the methylmercury iodide, a linebroadening mechanism specifically associated with the ¹⁹⁹Hg species can be envisaged, arising from coupling between ¹⁹⁹Hg and the quadrupole of ¹²⁷I. A rough assessment of this factor suggests that an effect of the observed magnitude can be calculated.³ A similar mechanism might be operative in the case of the bromide arising from ⁷⁹Br and/or ⁸¹Br although for this compound some other factor increasing the natural line-width by a small amount may be responsible. It would be difficult,

				60 N	60 Mc./sec.	
100 Mc./sec.; ~35°					~35°	~72°
Mole fraction MeHgI Chemical shift (τ) $J(^{199}Hg-^{1}H)$ (c./sec.) Main peak width (c./sec.)	8·9	$\begin{array}{c} 0.08 \\ 96 \pm 0.002 \\ 203 \pm 2 \\ 1.0 \end{array} $		Sat'd soln. 8.925 ± 0.02 204 ± 2	$ \begin{array}{cccc} $	0·24 ~196
Satellite width (c./sec.)	1	1.0 ± 0.5	10.7 ± 0.5	17 ± 2	2025	24-27
TABL	е 2. М	ethylmercury cos	mpounds in py	ridine solution	; present results	
		MeHgCl	MeH	IgBr	MeHgSCN	MeHgI
Mole fraction Chemical shift (τ) $J(^{199}Hg^{-1}H)$ (c./sec.) Main peak width (c./sec.)	••• •• ••	$\begin{array}{r} 0.05\\ 9.07 \pm 0.006\\ 215.4 \pm 0.6\\ 0.8\\ \end{array}$	0. 9.01 ± 211.0 1.	$ \begin{array}{r} 105 \\ \pm 0.008 \\ \pm 1.1 \\ 4 \end{array} $	$\begin{array}{c} 0.13 \\ 9.08 \pm 0.01 \\ 210.5 \pm 0.5 \\ 0.5 \end{array}$	$ \begin{array}{r} 0.08\\ 8.96 \pm 0.004\\ 203 \pm 2\\ 1.0\\ \end{array} $
Satellite width (c./sec.)	••	0.8	1-3	3	0.5	11.0 ± 0.5
		Results f	rom ref. 1. (5	moles %)		
Chemical shift $(\tau)^{a}$ $J(^{199}\text{Hg}-^{1}\text{H})$ (c./sec.)	••	(9.07) 215.2	(9 215	∂·02) 2·0	(9·03) 208·0	(8 ·96) 200 ·0
Main peak width (c./sec.)	••	<1	<1	L	<1	<1
Satellite width (c./sec.)	••	<1	2	2	5	16

TABLE 1.	Methylmercury	iodide in	p yri dine	solution
----------	---------------	-----------	-------------------	----------

^a Chemical shifts relative to $C_{4}H_{12}$ converted into τ -values by assuming 9.07 for methylmercury chloride.

however, to account for a substantial line broadening in the thiocyanate case on grounds other than methyl group exchange.

We have re-examined the ¹H n.m.r. spectrum of pyridine solutions of methylmercury thiocyanate employing carefully purified samples prepared either from methylmercury chloride and sodium thiocyanate or from dimethylmercury and mercuric thiocyanate. Our results from 100 Mc./sec. measurements are compared in Table 2 with the results of ref. 1.

thiocyanate in pyridine solution show no indications of satellite line-broadening. The same is true for solutions in benzene and in dioxan. The result reported in ref. 1 was obtained using material prepared from methylmercury iodide and could be accounted for if the sample contained iodide.

In summary the ¹H n.m.r. spectra of methylmercury compounds show no evidence of methyl group exchange. Methylmercury iodide may be unique in giving broad satellite resonances arising from a specific interaction between ¹⁹⁹Hg and ¹²⁷I.

It seems that pure samples of methylmercury

(Received, May 22nd, 1967; Com. 496.)

¹ J. V. Hatton, W. G. Schneider, and W. Siebrand, J. Chem. Phys., 1963, 29, 1330.

² P. R. Wells and W. Kitching, *Tetrahedron Letters*, 1963, 1531. ³ P. C. Lauterbur and P. R. Wells, to be published.