Nitration of Some 2,3-Dihydro-1,4-Diazepinium Perchlorates

By C. BARNETT[†]

(Department of Chemistry, McMaster University, Hamilton, Ontario, Canada)

NUCLEOPHILIC, free-radical, and electrophilic attack on the 2,3-dihydro-1,4-diazepine nucleus by neutral and negatively charged species is known.¹ Attack by a positively charged species however, has not been reported. It has been clearly demonstrated² that the nitrating species in nitric acidsulphuric acid mixtures is NO2+. I now report substitution of the 2,3-dihydro-1,4-diazepine nucleus by positively charged species.

2,3-Dihydro-5,7-dimethyl-1,4-diazepinium perchlorate (I) and 2,3-dihydro-1,4,5,7-tetramethyl-1,4-diazepinium perchlorate (II) undergo mononitration in nitric acid-sulphuric acid. The perchlorates (I) and (II) were heated at 70° for 2 hr. with nitric acid in 90% sulphuric acid. Yellow perchlorates (III) and (IV) were obtained on pouring the reaction mixture on to crushed ice, and had melting points (needles from water) 240-242° (III) and 231-232° (IV).

(II) has λ_{max} 318 m μ and ϵ_{max} 13,800 \pm 50. (IV) has λ_{\max} 328 m μ and ϵ_{\max} 18,000 \pm 50. The infrared spectra of (III) and (IV) are very similar to those of the parent compounds, but show intense absorptions at 1330 cm.⁻¹ which is generally associated with a nitro-group. The ¹H n.m.r. spectra of (III) and (IV) consist of three singlets, one less than (I) and (II) (Table).

The protons at τ 2.25 (I) and τ 2.8 (III) underwent deuterium exchange rapidly whilst those at τ 4.9 (I) and (II) underwent slow exchange $[k = 1.02 \pm 0.05 \times 10^{-6} \text{ sec.}^{-1} \text{ for the pseudo-}$ first-order exchange of the C-6 proton in (I)].³

ТΑ	BLE

		Chemical shift τ			
Proton	Solvent	(1)	(II)	(III)	(IV)
N-H	MeCN	2.25		2.8	
$N-CH_3$	Me ₂ SO		6.62		6.65
H-6	Me ₂ SO	4.9	4.9		
2(3)-CH ₂	Me ₂ SO	6.45	6.45	6.40	6.40
$5(7) - CH_3$	Me ₂ SO	7.7	7.7	7.55	7.50

From a comparison of the spectral data and analytical figures it is concluded that (III) and (IV) are respectively 2,3-dihydro-5,7-dimethyl-6nitro-1,4-diazepinium perchlorate and 2,3-dihydro-6-nitro-1,4,5,7-tetramethyl-1,4-diazepinium perchlorate.

The author is indebted to N.R.C. (Canada) for a Post-doctoral Fellowship and to Dr. J. Warkentin for many useful discussions.

(Received, May 15th, 1967; Com. 472.)

† Present address: Petrochemical and Polymer Laboratory, Imperial Chemical Industries Limited, The Heath, Runcorn, Cheshire.

¹G. Schwarzenbach and K. Lutz, Helv. Chim. Acta, 1940, 23, 1139; D. R. Marshall, Ph.D. Thesis, St. Andrews, 1958; C. Barnett, H. P. Cleghorn, G. E. Cross, D. G. M. Lloyd, and D. R. Marshall, J. Chem. Soc. (C), 1966, 93; C. Barnett, H. P. Cleghorn, G. E. Cross, D. G. M. Lloyd, and D. R. Marshall, J. Chem. Soc. (C), 1966, 93; C. Barnett, H. P. Cleghorn, G. E. Cross, D. G. M. Lloyd, and D. R. Marshall, J. Chem. Soc. (C), 1966, 93; C. Barnett, H. P. Cleghorn, G. E. Cross, D. G. M. Lloyd, and D. R. Marshall, J. Chem. Soc. (C), 1966, 93; C. Barnett, H. P. Cleghorn, G. E. Cross, D. G. M. Lloyd, and D. R. Marshall, J. Chem. Soc. (C), 1966, 93; C. Barnett, H. P. Cleghorn, G. E. Cross, D. G. M. Lloyd, and D. R. Marshall, J. Chem. Soc. (C), 1966, 93; C. Barnett, H. P. Cleghorn, G. E. Cross, D. G. M. Lloyd, and D. R. Marshall, J. Chem. Soc. (C), 1966, 93; C. Barnett, H. P. Cleghorn, G. E. Cross, D. G. M. Lloyd, and D. R. Marshall, J. Chem. Soc. (C), 1966, 93; C. Barnett, H. P. Cleghorn, G. E. Cross, D. G. M. Lloyd, and D. R. Marshall, J. Chem. Soc. (C), 1966, 93; C. Barnett, H. P. Cleghorn, G. E. Cross, D. G. M. Lloyd, and D. R. Marshall, J. Chem. Soc. (C), 1966, 93; C. Barnett, H. P. Cleghorn, G. E. Cross, D. G. M. Lloyd, and D. R. Marshall, J. Chem. Soc. (C), 1966, 93; C. Barnett, H. P. Cleghorn, G. E. Cross, D. G. M. Lloyd, and D. R. Marshall, J. Chem. Soc. (C), 1966, 93; C. Barnett, H. Chem. Soc. (C), 1966, 94; C. D. G. M. Lloyd and D. R. Marshall, J. Chem. Soc., 1958, 118; C. Richards, D.Phil. Thesis, Oxford, 1959; R. P. Bell and D. R. Marshall, J. Chem. Soc., 1964, 2195; C. Barnett and D. R. Marshall, Chem. Soc. Autumn Meeting 1965; Barnett, Ph.D. Thesis, Wales, 1965. ² E. D. Hughes and C. K. Ingold, with R. J. Gillespie, D. J. Millen et al., J. Chem. Soc., 1950, 2400-2684. C.

³ C. Barnett and J. Wakentin, Paper in preparation.