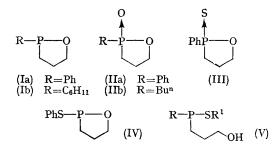
A Novel Synthesis of Phostones and Deoxophostones (1,2-Oxaphospholanes)


By MARTIN GRAYSON* and CHARLES E. FARLEY

(Chemical Department, Central Research Division, American Cyanamid Co., Stamford, Conn. 06904)

In a previous report¹ we described the preparation of phosphinothioite (R₂PSR¹) and phosphonodithioite [RP(SR1)2] esters from primary and secondary phosphines and disulphides. We have now found that secondary phosphines and secondary phosphine oxides containing a 3-hydroxyalkyl group give sulphur-free products whose spectral and chemical properties are consistent with the previously unreported 1,2-oxaphospholanes (I) and the known^{2,3} 1,2-oxaphospholane 2-oxides (phostones, II). For example, 3-hydroxypropylphenylphosphine and phenyl disulphide in benzene at 22° after 15 hr. gave 2-phenyl-1,2oxaphospholane (Ia), (34%) b.p. $112^{\circ}/0.5$ mm. in which both P-H and OH bands were absent in the infrared, whereas bands for P-O-C, P-Ph, and P-CH₂ were present (960, 1435, and 1418 cm.⁻¹, respectively). The proton count by n.m.r. gave the aryl: $OCH_2: CH_2$ ratio as 5:2:4 (σ of multiplets relative to Me₄Si were centred at 7.2, 3.95, 1.83 p.p.m.) with a single peak in the 16.2 Mc/sec. ³¹P spectrum at $-110\cdot2$ p.p.m. relative to 85%H₃PO₄. Reaction of (Ia) with sulphur gave the 2-thiono-compound (III), b.p. $152^{\circ}/0\cdot2$ mm. (P-O-C 973 and 799, P-CH₂ 1412, P-Ph 1115 and 1439, and a new band at 650 cm.⁻¹ which is probably P \rightarrow S; proton ratios again were 5:2:4 at 7.6, 4.45, and 2.36 σ , and the single ³¹P peak was at $-102\cdot4$ p.p.m.) Similarly reaction of 3-hydroxypropylphenylphosphine oxide with phenyl disulphide gave the known² phostone (IIa) (84%), b.p. 142°/0·2 mm. (P-O-C 967 and 817, P \rightarrow O 1215, P-CH₂ 1413, and P-Ph 1123 and 1442 cm.⁻¹; proton ratios for multiplets centred at 7.6, 4.38, and 2.15 σ were 5:2:4 and ³¹P n.m.r gave a single peak at $-58\cdot4$ p.p.m.).

Also prepared were (Ib), b.p. $127^{\circ}/0.15$ mm. (P-O-C 730 and 972, P-CH₂ 1423 cm.⁻¹; ratio of OCH₂ to all other protons was 2:15 with σ centred at 3.95 and 1.9 p.p.m.; the single ³¹P peak was at -123.1 p.p.m. and (IIb), b.p. $94^{\circ}/0.25$ mm. (P-O 1220, P-O-C 985 and 800, and P-CH₂ 1412 cm.⁻¹; proton OCH₂:CH₂:CH₃ ratio was 2:10:3 with multiplets centred at 4.25, 1.9, and 0.95σ , ³¹P was at -71·1 p.p.m.).

With 3-hydroxypropylphosphine and 2 mol. equivalents of phenyl disulphide, the mixed ester (IV) (22%) b.p. $116^{\circ}/0.2$ mm., was obtained (P-O-C 960, Ph at 1582, and P-CH, at 1418 cm.⁻¹; proton aryl: OCH₂: CH₂ ratio was 5:2:4 at 7.3,

831

4.18 and 1.8 σ , with the ³¹P peak at -79.0 p.p.m.). Intermediate formation of the thioite ester (V) $(R=C_6H_{11}, R^1=n-C_4H_9)$ was shown by carrying out the reaction as usual (dry benzene, room temperature) but removing solvent and thiol at 20-25° under reduced pressure. The infrared spectrum and elemental analysis of the residue were consistent with (V) and vacuum distillation gave (Ib) in 35% yield along with the usual residual

glassy resin. Preparation of ring-substituted 1,2-oxaphospholanes and the use of cyclization reagents other than disulphides will be reported elsewhere. The hydrolytic properties and ring-strain chemistry of these phosphorus(III) compounds are also under study in view of their relationship to the unusually reactive five-membered cyclic esters of various phosphoric acids.4

(Received, June 22nd, 1967; Com. 637.)

M. Grayson and C. E. Farley, J. Org. Chem., 1967, 32, 236.
C. W. Smith, U.S.P. 2,648,695/1949 (Chem. Abs., 1954, 48, 8252).
A. Y. Garner, U.S.P. 2,916,510/1958 (Chem. Abs., 1960, 54, 5571).

- * E. A. Dennis and F. H. Westheimer, J. Amer. Chem. Soc., 1966, 88, 3432 and references cited therein.