Free-radical Displacement on a Hydroperoxide

By D. J. TRECKER* and R. S. FOOTE

(Research and Development Department, Union Carbide Corporation, Chemicals and Plastics, South Charleston, W. Va. 25303)

FREE-RADICAL displacements on carbon, oxygen, sulphur, and phosphorus generally take the form of an abstraction of a hydrogen or halogen atom.¹ Recently, intramolecular displacements of carbon radicals on carbon have been postulated in which halogen atoms^{2,3} and alkyl radicals⁴ constituted the leaving groups. Similar substitutions on disulphides have also been shown.⁵

We now report what is apparently the first example of a radical displacement on a hydroperoxide. Treatment of methyl isobutyrate with t-butyl hydroperoxide under both thermal (150°) and photolytic (2537 Å) conditions afforded methyl 2-hydroxyisobutyrate, (I, 14-34% yield), in addition to the reported⁶ ester-derived products of coupling and disproportionation.

That the formation of (I) resulted from attack of the 1-carboxy-1-methylethyl radical on hydroperoxide was shown by decomposing dimethyl 2,2'-azobis(isobutyrate) in t-butyl hydroperoxide under deoxygenated conditions at 92° . Control experiments demonstrated that the hydroperoxide

37:-14 -4 /1

TABLE

Yields of methyl 2-hydroxyisobutyr	rte from decombositi	on of the azo-combound +
	, , , , , , , , , , , , , , , , , , ,	

		Y IEIG OI (I)	
Solvent	Additive	Based on azo-compound	Based on reacted $t-BuO_2H$
t-Butyl alcohol t-Butyl alcohol Methyl isobutyrate Methyl isobutyrate	None t-Butyl hydroperoxide (1·3 м) t-Butyl hydroperoxide (1·3 м) t-Butyl hydroperoxide (1·3 м), and hydro-	0.0% 4.9 10.5	0·0% 49·5 38·1
11001191 1000 109-1000	quinone (0.06 M)	0.8	8.1

† Concentration of the azo-compound was 0.65 M in each instance; reaction temperature was 92°.

was thermally stable under these conditions. Reaction products were methyl isobutyrate (16.6%), methyl methacrylate (1.1%), dimethyl tetramethylsuccinate (43.5%), dimethyl 2,2,4-trimethylglutarate (3.1%), dehydro-trimers (21.6%), and compound (I) (4.9%).

Increased hydroperoxide concentration and the presence of a hydrogen-donor solvent enhanced the yield of (I), while added hydroquinone inhibited its formation. These results, summarised in the Table, are consistent with the notion of a short radical-chain sequence involving homolytic displacement of a t-butoxy-radical from the hydroperoxide.

 $\cdot CMe_2 \cdot CO_2Me \rightarrow$ Coupling and disproportionation $\cdot CMe_2 \cdot CO_2Me + t - BuO_2H \rightarrow$ $HO-CMe_2 \cdot CO_2Me + t-BuO$. **(I)**

$$\begin{array}{l} \text{t-BuO} \cdot + \text{Me}_2\text{CH}\cdot\text{CO}_2\text{Me} \rightarrow \\ \\ \text{t-BuOH} + \cdot\text{CMe}_2\text{CO}_2\text{Me} \end{array}$$

A similar process has been proposed⁷ to account for the hydroxylation of hydrocarbons by per-acids.

(Received, July 10th, 1967; Com. 712.)

‡ Yields are based on initial concentration of the azo-compound.

¹ C. Walling, "Free Radicals in Solution", John Wiley, New York, 1957, p. 239.
² L. Kaplan, J. Amer. Chem. Soc., 1967, 89, 1753.
⁸ J. S. Shapiro and E. S. Swinbourne, Chem. Comm., 1967, 465.
⁴ N. J. Friswell and B. G. Gowenlock, Chem. Comm., 1965, 277.

⁵ W. A. Pryor and H. Guard, J. Amer. Chem. Soc., 1964, 86, 1150. ⁶ A. F. Bickel and W. A. Waters, Rec. Trav. chim., 1950, 69, 312.

⁷ D. L. Heywood, B. Phillips, and H. A. Stansbury, jun., J. Org. Chem., 1961, 26, 281; D. Lefort, et al., Bull. Soc. chim. France, 1959, 1385; 1961, 2373; 1962, 827.