The Structure of the Mercuric Chloride Adduct of *cis*-4-*p*-Chlorophenylthian 1-Oxide

By R. S. MCEWEN*

(Bell Telephone Laboratories, Murray Hill, New Jersey)

and G. A. SIM

(The Chemical Laboratory, University of Sussex)

and C. R. JOHNSON

(Department of Chemistry, Wayne State University, Detroit, Michigan)

Two distinct aspects of sulphoxide chemistry are currently attracting attention: (i) the configurations of dialkyl sulphoxides,^{1,2} and (ii) the coordination properties of dimethyl sulphoxide.^{3,4} We report here results which are pertinent to both areas of enquiry.

The cis- and trans-isomers of 4-p-chlorophenylthian 1-oxid were distinguished by Johnson² on the basis of dipole moment measurements, which were interpreted by assuming that the thian ring adopts a chair conformation. The earlier and unexpected conclusion "that a six-membered-ring sulphoxide is more stable with the oxide in the axial position"² imparts particular importance to unequivocal structural determination in this series, and we therefore considered a crystallographic study desirable.

The isomer which was assigned the *cis*-configuration forms a 2:1 adduct with mercuric chloride, and crystals of the complex are monoclinic, space group $P2_1/c$, with four units of $(\text{Cl}C_6\text{H}_4\cdot\text{C}_5\text{H}_9\text{SO})_2$,-HgCl₂ in a cell of dimensions $a = 15\cdot40$, $b = 9\cdot37$, $c = 22\cdot50$ Å, $\beta = 128^{\circ}0'$. After Fourier and leastsquares adjustment of the atomic co-ordinates, the value of R is $11\cdot2\%$ over 2274 independent reflexions. From the X-ray analysis we find that each thian ring of the two distinct 4-p-chlorophenylthian 1-oxide molecules in the complex assumes a chair conformation with the S-O group axial and the *p*-chlorophenyl substituent equatorial, thus confirming the previous assignment of *cis*-stereochemistry.

The thian sulphoxide molecules are co-ordinated with the Hg^{II} cation through the oxygen atoms (see the Figure). Dimethyl sulphoxide co-ordinates through oxygen in [Fe(Me₂SO)₄Cl₂][FeCl₄],³ but through sulphur in *trans*-PdCl₂(Me₂SO)₂³ and (C₁₅H₁₃O)Cl₂Ir(Me₂SO)₂.⁴ The average S-O bond length of 1.56 \pm 0.03 Å in the HgCl₂ adduct is close to the distance of 1.54 Å in the dimethyl sulphoxide-Fe^{III} complex, whereas the S-O distances in the Pd^{II} and Ir^{III} complexes are 1.47 and 1.46 Å, in excellent agreement with the value in dimethyl sulphoxide, 1.47 Å.⁵

The complex has the centrosymmetric dimeric structure (I) with bridging Hg-O distances of 2.48 and 2.97 Å, and terminal Hg-O distance of 2.70 Å (standard deviation, 0.02 Å). The Hg-Cl distances are 2.284 and 2.295 Å (± 0.01 Å), and the angle Cl-Hg-Cl is 164.0 $\pm 0.3^{\circ}$. The distorted octahedral environment of the mercury atom is

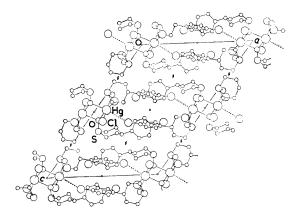
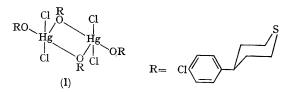



FIGURE. The crystal structure, viewed in projection along the b axis.

completed, *trans* to the short Hg–O bond, by the chlorine atom of a p-chlorophenyl group of a neighbouring molecule, but the Hg–Cl distance of

3.88 Å is very long and the interaction between these atoms must be extremely tenuous.

In the 1:1 and 1:2 adducts of mercuric chloride and triphenylarsine oxide, the mercury atoms display distorted tetrahedral co-ordination with Cl-Hg-Cl angles of 147° and 145°, respectively,6 and the Hg-Cl bonds are slightly longer, and the Hg-O bonds shorter, than the bonds in the HgCl₂thian sulphoxide complex. In the mercuric chloride adducts of azoxyanisole and quinoline Noxide, on the other hand, the mercury atoms are

octahedrally co-ordinated, and less distorted HgCl₂ molecules can be recognized with Cl-Hg-Cl angles of 175° and 174°, respectively.7 These results suggest that in donor ability the sulphoxide S-O group falls between the As-oxide and N-oxide groups.8

(Received, July 4th, 1967; Com. 693.)

¹ inter alia, R. Nagarajan, B. H. Chollar, and R. M. Dodson, Chem. Comm., 1967, 550; B. P. Sollman, R. Nagarajan, and R. M. Dodson, *ibid.*, p. 552; P. Bickart, M. Axelrod, J. Jacobus, and K. Mislow, *J. Amer. Chem. Soc.*, 1967, 89, 697; K. W. Buck, A. B. Foster, W. D. Pardoe, M. H. Qadir, and J. M. Webber, *Chem. Comm.*, 1966, 759; K. W. Buck, 697; K. W. Buck, A. B. Foster, W. D. Fardor, M. H. Qaun, and J. M. Wobber, Comm. Comm., 1996, 1997, 1997, 1998, 1998, 2018.
² C. R. Johnson, J. Amer. Chem. Soc., 1963, 85, 1020; C. R. Johnson and D. McCants, jun., *ibid.*, 1965, 87, 1109.
⁸ M. J. Bennett, F. A. Cotton, and D. L. Weaver, Nature, 1966, 212, 286, and references therein.
⁴ M. McPartlin and R. Mason, Chem. Comm., 1967, 545.
⁵ M. A. Viswamitra and K. K. Kannan, Nature, 1966, 209, 1016.
⁶ C. J. Defield Arbit. Kemi, 1964, 22, 485, 445 (hem. Scand., 1963, 17, 1363.

- ⁶ C.-L. Brändén, Arkiv Kemi, 1964, 22, 485; Acta Chem. Scand., 1963, 17, 1363.
- ⁷ A. T. McPhail and G. A. Sim, Chem. Comm., 1966, 21.
 ⁸ Cf., I. Lindquist and M. Zackrisson, Acta Chem. Scand., 1960, 14, 453.