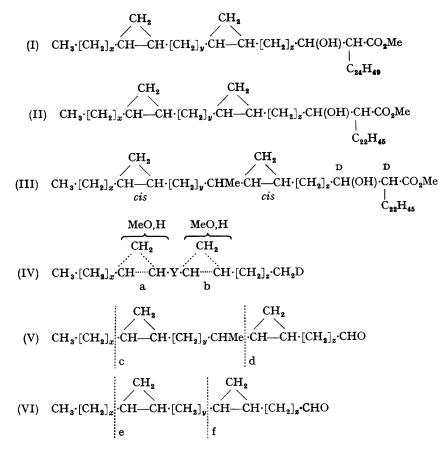
The Mycolic Acids from Human and Avian Tubercle Bacilli

By D. E. MINNIKIN and N. POLGAR*


(Dyson Perrins Laboratory, South Parks Road, Oxford)

ETÉMADI and his co-workers have claimed recently that the methyl esters of certain mycolic acids isolated from human and avian strains of tubercle bacilli have the analogous structures (I; y = 14, z = 13)¹ and (II; z = 17, y = 14, z = 17),² respectively (the figures refer to the main homologue). We have carried out a parallel investigation of these compounds and we find that the structure of the human mycolic ester (methyl hominomycolate) is (I; z = 19, y = 14, z = 13), but that (III; z = 17, y = 12, z = 17) represents the probable structure of the avian mycolic ester.

Methyl avimycolate-I, $[\alpha]_D + 3.05^\circ$ and a new sample of methyl hominomycolate-I, $[\alpha]_D + 3.7^\circ$, were obtained from *M. avium* (strains Dn., 485 and 7169)³ and *M. tuberculosis* var. hominis (strains D.T., P.N., and C.)³ as described previously⁴ for methyl hominomycolates. Pyrolysis of the two esters gave the corresponding meroaldehydes which were reduced to the alcohols with LiAlH₄. Conversion of the meroalcohols into the methanesulphonates followed by reduction with LiAlD₄ gave the corresponding 1-deuteromeromycolanes. These hydrocarbons were treated with boron trifluoride-methanol,⁵ and the methoxylated products separated and their mass spectra studied.

The spectrum of the avian dimethoxy-derivative (IV) shows peaks at m/e 727, 755, 783, 811, 839, 867 (M-2MeOH) (the most abundant peak in any series is in italics). Cleavage at centres a and b gives ions of m/e 297, 311, 325, and 298, 312, 326, respectively, which lead to the values x = 17 and z = 17 for the main component $(m/e \ 783)$; it follows that the portion Y has the composition $C_{14}H_{28}$. Similar calculations based on the ions observed in the spectrum of the human dimethoxyderivative lead to the structure (I; x = 19, y = 14, z = 13) for the main component of this sample of methyl hominomycolate-I [the figures in the structure suggested earlier⁵ for another sample of this ester were miscalculated and should have been (I; x = 19, y = 14, z = 11].

The n.m.r. spectra (CDCl_3) of hominomeromycolic alcohol-I and its methanesulphonate show the

presence of a single terminal methyl group ($\tau 9.06$), but the spectra of the corresponding avian compounds contain, downfield from the expected terminal methyl group signal, a doublet ($\tau 9.01$) which may be attributed to a single methyl branch.

The optical rotations of hominomeromycolic alcohol-I, its methanesulphonate, and 1-deuteromeromycolane-I are, as expected, very small $([\alpha]_D - 0.13^\circ, -0.14^\circ, -0.12^\circ, respectively)$; the values for the corresponding avian compounds are significantly larger $([\alpha]_D - 1.33^\circ, -0.75^\circ, -0.51^\circ, respectively)$.

The mass spectrum of avimeromycolal-I (V) shows molecular ions of m/e 740, 768, 796, 824, 852, 880, and intense oxygen-containing fragments of m/e 515, 543, 571, 599, and 307, attributable to cleavage at positions c and d, respectively. The spectrum of hominomeromycolal-I (VI), however, while showing fragments at m/e 459, 487, 515, 543 due to cleavage at position e, does not show single intense peaks due to cleavage at position f; it hows groups of peaks of only medium intensity. In

the light of the comparatively ready cleavage of avimeromycolal-I it seems probable that the position of the methyl branch is as indicated in the structure (V).

The n.m.r. spectrum of methyl avimycolate-I shows the presence of two *cis*-cyclopropane groups $(\tau \ 10.3 \text{ and } 9.4)$, and the stereochemistry at C-2 and C-3 was found to be the same as for the human mycolic esters.⁶ The structure (III; x = 17, y = 12, z = 17) may, therefore, be put forward for the main component of methyl avimycolate-I. It is notable that, assuming the presence of only one methyl branch, this structure would contain an odd number of carbon atoms in the main chain; the n.m.r. spectrum does not seem to admit the presence of a second methyl branch.

The structure (II) has also been suggested by Etémadi and his co-workers for the methyl esters of α -kansamycolic acid² and a mycolic acid from M. *phlei.*⁷ The mass spectra of the meroaldehydes corresponding to these esters have not been reported, but if in fact they contain an intense peak in the mass spectrum at m/e 307 as claimed, then these esters may well have structures analogous to the structure (III) suggested above for methyl avimycolate-I. The bicyclopropane compound from M. phlei is the only mycolic acid of this type which at present is known⁷ to occur in the presence of possible unsaturated precursors. A detailed investigation of these mycolic acids should throw light on the mode of biosynthesis of the above compounds.

(Received, July 28th, 1967; Com. 785.)

- ¹ A. H. Etémadi, Compt. rend., 1966, 263, C, 1257. ² A. H. Etémadi, F. Pinte, and J. Markovits, Bull. Soc. chim. France, 1967, 195.

- ⁵ H. H. Etemath, F. Finle, and J. Matkovits, Dut. 500, 000000, 1700000, 3
 ⁸ H. H. Green, Veterinary J., 1946, 102, 267.
 ⁴ D. E. Minnikin and N. Polgar, Tetrahedron Letters, 1966, 2643.
 ⁵ D. E. Minnikin and N. Polgar, Chem. Comm., 1967, 312.
 ⁶ D. E. Minnikin and N. Polgar, Chem. Comm., 1966, 648.
 ⁷ G. Lamonica and A. H. Etémadi, Compt. rend., 1967, 264, C, 1711.