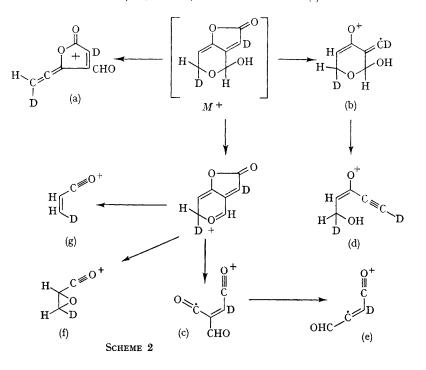

A Mass-spectrometric Study of Biosynthesis: Conversion of Deutero-m-cresol into Patulin


By A. I. SCOTT* and M. YALPANI

(The Chemical Laboratory, University of Sussex, Brighton)

THE convenient and rapid direct mass-spectrometric mapping of the biosynthesis of indole alkaloids has recently been described.¹ The same technique has now been applied to the biosynthesis of patulin (I) in *Penicillim patulum*. Although conversion of 6-methylsalicyclic acid (II) into patulin (I) has been previously demonstrated,² the nature of other intermediates has remained obscure. The generally accepted pathway is as shown in Scheme 1, path B.

The discovery of several new phenolic metabolites of *P. patulum*, namely *m*-cresol,^{3,4} (III; R = H) *m*-hydroxybenzyl alcohol⁵ (IV) and toluquinol⁴ (VI), suggested (III; R = H) as the most likely intermediate after 6-methylsalicylic acid (II). When [2,4,6-²H₃]-3-methylphenol (III; R = D) was administered to *P. patulum* under normal culture conditions and the derived patulin examined in the mass spectrometer, the enrichment of the (M + 2) peak (156) corresponded to a 30% incorporation of (III; R = D) (after correction for the loss of one deuterium atom). Using a glucosedeficient medium the conversion of (III; R = D) into (I; R = D) was 57.9% (M + 2/M = 1.4). The mass spectrum of (I; R = D) disclosed seven principal fragment ions (a)—(g) (Table; Scheme 2)

in accord with the predicted labelling pattern. These assignments are supported by high-resolution mass measurements (Table) and by n.m.r. integration measurements which, for example, show the ratio of the C-5 protons in (I; R = H) to (I; $\mathbf{R} = \mathbf{D}$) to be $1 \cdot 5/1 \cdot 0$.

TABLE										
Relative	abundance						(M +	1)	peaks	in
deuteropatulin										

		Ratio	
	Fragment	(M + 2)/M	(M + 1)/M
156	M + 2	1.4	
138	(a)	1.4	
128	(b)	1.4	
111	(c) (111.0061)		1.3
99	(d) (99.0392)	1.4	
83	(e) (83.0115)		1.5
72	(f) (72.0197)		1.3
56	(g) (56.0241)		1.3

Ratios were obtained in each case by comparison with the corresponding (M-2) or (M-1) peaks in unlabelled patulin.

Since deuterium from C-6 in (III; R = D) is retained at C-5 in patulin, ring fission of gentisaldehyde (V), a presumed intermediate, must be followed by a stereospecific reduction. In support of this step the deuteropatulin (I; R = D) was found to be optically active $[M]_{320} - 122^{\circ}$; $[M]_{300}$ $+3800^{\circ}$, whereas natural patulin is optically inactive in all accessible regions of the spectrum.

In addition, the toluquinol (VI), gentisyl alcohol (VII), and gentisaldehyde (V) obtained from this source showed a deuterium enrichment of the (M + 2) peak corresponding to respective incorporations of 71.0, 65.6, and 66.7% of (III; R = D). It is interesting to note that, in contrast to the observations of Witkop and others,6 no intramolecular migration of deuterium during the course of the aromatic hydroxylation (III \rightarrow VI or $IV \rightarrow VII$) is evident in our experiments as this would require the presence of an (M + 3) peak in the mass spectra of our products.

(Received, July 26th, 1967; Com. 772.)

¹ E. S. Hall F. McCapra, T. Money, K. Fukumoto, J. R. Hanson, B. S. Mootoo, G. T. Phillips, and A. I. Scott, Chem. Comm., 1966, 348.

² S. W. Tanenbaum and E. W. Bassett, J. Biol. Chem., 1959, 234, 1961; Biochem. Biophys. Acta, 1960, 40, 535.

³ J. D. Bu'Lock, D. Hamilton, M. A. Huľme, A. J. Powel, H. M. Smalley, D. Shepherd, and G. N. Smith, *Canad. J.* Microbiol., 1965, 11, 765.

⁴ A. I. Scott and M. Yalpani, unpublished results.

 ⁵ M. C. Rebstock, Arch. Biochem. Biophys., 1964, 104, 156.
⁶ D. Jerina, J. Daly, W. Landis, B. Witkop, and S. Udenfriend, J. Amer. Chem. Soc., 1967, 89, 3347.
⁷ Cf. S. H. Pomeranz, J. Biol. Chem., 1966, 241, 161 and references cited, wherein mammalian tyrosinase is shown to hydroxylate tyrosine to Dopamine with loss of hydrogen ortho to the phenolic hydroxy-group. A similar effect has recently been observed in plants (A. R. Battersby) and in mammalian systems (J. Fishman [private communications]).