1,3,4-Oxadiazolium Salts

By G. V. Boyd

(Department of Chemistry, Chelsea College of Science and Technology, London, S.W.3)

No quaternary salts derived from simple 1,3,4-oxadiazoles appear to have been described, whereas N-alkyl-1,2,4- and 1,2,5-oxadiazolium salts are known.¹ It has now been found that 1,3,4-oxadiazoles can be protonated and alkylated and stable salts, e.g., (Ia-d, Iq) (see Table), are easily obtained.

3-Aryl-1,3,4-oxadiazolium perchlorates (I; $R^3 =$ aryl, $X = ClO_4$) are formed in excellent yields when 1,2-diacyl-1-arylhydrazines are treated with 70% perchloric acid in acetic anhydride:

$$R^{\delta}CO\cdot NH\cdot NR^{3}\cdot COR^{2} \xrightarrow{\qquad \qquad } R^{\delta} \overbrace{\stackrel{()}{\underset{N}{\longleftarrow}} R^{2}}^{O} R^{2}$$

$$(I)$$

The general method can be modified in various ways: (i) 3-aryl-2-methyl-1,3,4-oxadiazolium perchlorates are obtained from 2-acyl-1-arylhydrazines and acetic anhydride-perchloric acid, thus the salts (Ig) and (Ii) were made from 2-formyl- and 2-benzoyl-1-phenylhydrazine, respectively; (ii) 3-aryl-2,5-dimethyloxadiazolium perchlorates, e.g. compounds (Ih) and (In), are formed directly from

arylhydrazines and acetic anhydride-perchloric acid; (iii) other acid anhydrides may be used in place of acetic anhydride, thus treatment of 2benzoyl-1-phenylhydrazine and of p-nitrophenylhydrazine with propionic anhydride-perchloric acid gave the ethyloxadiazolium salts, (Io) and (Ip), respectively; (iv) tetrafluoroborates, e.g., compounds (Ij) and (Im), were prepared by substituting 40% tetrafluoroboric acid for perchloric acid. Furthermore, the method can be extended to the synthesis of 1,3,4-oxadiazoles: 1,2-diacylhydrazines on treatment with acid anhydrides and perchloric acid afford 3H- or 4H-1,3,4-oxadiazolium perchlorates which are readily deprotonated to oxadiazoles, e.g., 1,2-dibenzovlhydrazine gave the salt (Ia) and thence 2,5-diphenyl-1,3,4-oxadiazole, benzhydrazide reacted with acetic anhydride-perchloric acid to give compound (Ib) which yielded 2-methyl-5phenyloxadiazole quantitatively when stirred with water, similarly from p-nitrobenzhydrazide, propionic anhydride, and perchloric acid, the salt (Iq) and thence the known 2-ethyl-5-p-nitrophenyl-1,3,-4-oxadiazole were obtained.

The Table lists some of the oxadiazolium salts prepared. Correct analyses were obtained for all compounds, their structures are substantiated by

TABLE
1,3,4-Oxadiazolium salts

Com	npounc	i	R²	Formu R³	ıla (I) R ⁵	X	Yield (%)	М.р.	Chemical shift of C -methyl protons (τ) in $CF_3 \cdot CO_2H$
	•						(70)	-	· -
(Ia)			\mathbf{Ph}	H	\mathbf{Ph}	ClO ₄	31	249°	
(Ib)			Me	H	Ph	ClO ₄	92	184	6.96
(Ic)			${ m Me}$	Me	\mathbf{Ph}	ClO ₄	82	229a	6.91
(Id)			Me	Et	Ph	$\mathbf{BF}_{\blacktriangle}$	84	152.5	6.91
(Ie)			H	P h	H	ClO ₄	81	135a,b	
(If)			\mathbf{H}	$\mathbf{P}\mathbf{h}$	Me	ClO,	87	140a,b	$7 \cdot 10$
(Ig)			Me	$\mathbf{P}\mathbf{h}$	H	ClO ₄	55	216a	6.86
(Ih)			Me	\mathbf{Ph}	Me	ClO ₄	81	114 ^b	6.96, 7.20
(Ii)			Me	\mathbf{Ph}	\mathbf{Ph}	ClO ₄	94	189	6.87
(Ij)			\mathbf{Me}	$\mathbf{P}\mathbf{h}$	\mathbf{Ph}	BF_4	95	163.5	6.87
(Ik)			\mathbf{Ph}	${f Ph}$	Me	CIO ₄	75	$209 \cdot 5$	7-11
(II)			$\mathbf{P}\mathbf{h}$	\mathbf{Ph}	\mathbf{Ph}	ClO ₄	97	272a	
(Im)			\mathbf{Ph}	\mathbf{Ph}	$\mathbf{P}\mathbf{h}$	BF_4	98	237a	
(In)			Me	p-NO ₂ ·C ₆ H ₄	Me	ClO ₄	95	219a	6.81, 7.12
(Io)			Et	Ph	$\mathbf{P}\mathbf{h}$	ClO ₄	95	197.5	
(\mathbf{Ip})			Et	$p\text{-NO}_2\cdot C_6H_4$	Et	CIO.	75	161a,b	
(Iq)	• •	• •	Et	H T	$p\text{-NO}_2\cdot C_6H_4$	ClO ₄	85	200a,c	-

^a With decomposition; ^b Hygroscopic; ^c Protonation on N-3 is probable.

the infrared spectra which are devoid of amide and hydroxyl bands but exhibit $C=N^+$ absorption at $1620-1630~\rm cm.^{-1}$ The n.m.r. spectra of the C-methyl salts are revealing: the protons of 2-methyl groups resonate at $ca.~\tau$ 6·9, those of 5-methyl groups at $7\cdot 1-7\cdot 2$. 2-Methyl-5-phenyl-1,3,4-oxadiazole on protonation, methylation, and ethylation yielded salts each of which showed a single methyl signal near τ 6·9, characteristic of a 2-methyl group. Attack must therefore have occurred at N-3 in each case and the salts are accordingly formulated as (Ib), (Ic), and (Id), respectively.

2-Alkyl groups in the oxadiazolium salts (I; $R^3 = H$, alkyl or aryl) are reactive; thus 2-methyl-3,5-diphenyloxadiazolium perchlorate (Ii) condenses with p-dimethylaminobenzaldehyde in boiling acetic acid to yield a red styryl derivative, the isomeric 5-methyl compound (Ik) does not react under these conditions.

The 3-aryloxadiazolium salts are very sensitive to nucleophilic attack. Treatment with water results in ring fission to yield diacylarylhydrazines. The action of other nucleophiles is under investigation.

(Received, August 7th, 1967; Com. 831.)

¹ R. A. Olofson and J. S. Michelman, J. Amer. Chem. Soc., 1964, 86, 1863; J. S. Michelman, Diss. Abs., 1965, 26, 1920.