The Effect of Substituents on the Acidity of Fluorene

By K. Bowden* and A. F. Cockerill

(Department of Chemistry, University of Essex, Wivenhoe Park, Colchester, Essex)

SEVERAL reports have been made recently on the acidity of carbon acids.¹⁻³ This has prompted us to report some of the salient features of our

results. An acidity function,⁴ H_{-} , has been established for the range 40—95 mole % aqueous dimethyl sulphoxide using a series of carbon acid indicators. The indicators, listed in the Table were chosen to enable a systematic study of the

TABLE

The pK, values of the carbon-acid indicators for the acidity function (H_) of aqueous dimethyl sulphoxide containing tetramethylammonium hydroxide

Acid	pK∎‡
2-Nitrofluorene	17.96
9-(p-Biphenyl)fluorene	18.21
9-Phenylfluorene	(18·59)≞
2-Cyanofluorene	18-96
3,4-Benzofluorene	19·62 ^b
2-Bromofluorene	20.56
2-Chlorofluorene	20.59
9-Benzylfluorene	21.20
4,5-Methylenephenanthrene	21·19°
9-Methylfluorene	21·80ª
Fluorene	22·10e
9-Ethylfluorene	22.22
2-Methoxyfluorene	22.36
9-Isopropylfluorene	22.70
9-t-Butylfluorene	23.41

[‡] pK_a of acids relative to a value of 18.59 for 9phenylfluorene.⁵ Literature values are: ^a 18.49 (aqueous sulpholan); ⁶ 18.38 and 18.42 (aqueous dimethyl sulphoxide); ⁵⁷ 18.1 (dimethyl sulphoxide); ^{3b} 16.4 (dimethyl sulphoxide).^{2b}

^b 19·45 (Cæsium cyclohexylamide in cyclohexylamine); 19·38 (lithium cyclohexylamide in cyclohexylamine).^{1b}

^c 22·63 (Cæsium cyclohexylamide in cyclohexylamine);¹* 22·60 (lithium cyclohexylamide in cyclohexylamine);²b 20·0 (dimethyl sulphoxide).²*

d 19.7 (Dimethyl sulphoxide).2b

^e 22.74 (Cæsium cyclohexylamide in cyclohexylamine);^{1s} 22.83 (cæsium cyclohexylamide in cyclohexylamine);^{1b} 21.0 (ethanolic dimethyl sulphoxide);⁵ 20.5 (dimethyl sulphoxide);^{3a} 20.5 (dimethyl sulphoxide);^{2b} 21.1 (dimethyl sulphoxide).⁸

effect of both 9- and 2- substituents on the acidity of fluorene. The present acidity function is based on a pK_a value of 18.59 for 9-phenylfluorene.⁵ This value has the advantage of being entirely dependent on a scale of carbon-acid indicators and has been measured by successive overlap of indicators in ethanolic dimethyl sulphoxide. However, this scale was anchored in aqueous solution by malononitrile and the pK_a of 9phenylfluorene may be in some error due to deviations in pK_a scales in different protic solutions. Other values by Langford and Burwell⁶ (18.49), Bowden and Stewart⁵ (18.38), and the present workers⁷ (18.42) are based on acidity scales generated by aniline indicators. The value of Steiner and Starkey^{3b} (18.1) was obtained from a comparison with the dubious indicator,⁸ 4nitroaniline. Ritchie's measurements (16.4) in pure dimethyl sulphoxide^{2b} will not be applicable to correlations in the presence of protic solvents and are based on a non-Hammett indicator technique. In the present studies, the acidity scale has been generated by closely overlapped Hammett-type indicators which give slopes of approximately unity and are completely reversible. The values relative to 9-phenylfluorene are thus considered reliable.

A number of interesting points are evident from our acidity measurements. By treating the 2-substituents as equivalent to meta-benzene substitution,⁹ a Hammett correlation gives a ρ value of $7 \cdot 1$; N.B. the parent compound, fluorene, alone deviates from this plot. This very high reaction constant can be compared to that for phenols¹⁰ (2.23) and anilines⁸ (4.07) and attributed to the increased charge delocalisation. The 9alkylfluorenes follow the order of acidity attributable to the expected inductive effect and are well correlated by Taft σ^* values; except that fluorene is less acidic than 9-methylfluorene (as reported previously²⁸). This unexpected acid strengthening effect of the methyl group may arise from two effects. The first is that 9-alkyl substituents with α -hydrogen atoms may stabilise the anion by an "anti-hyperconjugation" effect, *i.e.*, the contribution of structures involving H-. The second is that the same substituents could give rise to fulvene character, again caused by the contribution of structures involving H⁻.

The present acidity function increases slightly more rapidly with increasing mole % dimethyl sulphoxide than does the scale recently established using aniline indicators.8 Some part of this discrepancy can be attributed to the different base concentrations used (0.0471 m in the present)study and 0.0111M by the previous workers) in establishing the scales, which causes a more rapid onset of the shortage of base-solvating water molecules.⁴ However, it possibly results from a different behaviour of the activity coefficients of the conjugate bases of the two indicator systems. A comparison of the behaviour of aniline and carbon-acid indicators in our system shows a slower response of 4-nitroaniline compared to the carbon acids and 4-chloro-2-nitroaniline.7 Recent investigations indicate that the ionisation of 4-nitroaniline is very solvent dependent.¹¹ This aniline may not be a Hammett indicator.⁸

Studies are in progress to correlate the pK_{a} values of the fluorene indicators with LCAO-MO calculations. The full implications and details of these and related results will be discussed in the full publication.

(Received, August 1st, 1967; Com. 814.)

¹ (a) A. Streitweiser, jun., E. Ciuffarin, and J. H. Hammons, J. Amer. Chem. Soc., 1967, 89, 63; (b) A. Streitweiser, jun., J. H. Hammons, E. Ciuffarin, and J. I. Brauman, J. Amer. Chem. Soc., 1967, 89, 59.

² (a) C. D. Ritchie and R. E. Uschold, J. Amer. Chem. Soc., 1967, 89, 1721; (b) C. D. Ritchie and R. E. Uschold, J. Amer. Chem. Soc., 1967, 89, 2753. ³ (a) E. C. Steiner and J. M. Gilbert, J. Amer. Chem. Soc., 1965, 87, 383; (b) E. C. Steiner and J. D. Starkey, J. Amer.

Chem. Soc., 1967, 89, 2751.

⁴ K. Bowden, Chem. Rev., 1966, 66, 119.

⁵ K. Bowden and R. Stewart, Tetrahedron, 1965, 21, 261.

⁶ R. L. Burwell and C. H. Langford, J. Amer. Chem. Soc., 1960, 82, 1503.

⁷ K. Bowden and A. F. Cockerill, unpublished observations.

⁸ R. Stewart and D. Dolman, Canad. J. Chem., 1967, 45, 911.
⁹ (a) K. D. Warren, J. Chem. Soc., 1963, 598; (b) J. D. Dickinson and C. Eaborn, J. Chem. Soc., 1959, 3514, 3641;
(c) G. G. Smith and R. P. Boyer, Tetrahedron, 1962, 18, 323.

¹⁰ A. I. Biggs and R. A. Robinson, J. Chem. Soc., 1961, 388.
¹¹ (a) D. Bethell and A. F. Cockerill, J. Chem. Soc. (B), 1966, 913; (b) R. Stewart and J. P. O'Donnell, Canad. J. Chem., 1964, 42, 1511; (c) C. Jacquinet-Vermesse, R. Schaal, and P. Souchay, Bull. Soc. chim. France, 1960, 141.