An Electron Spin Resonance Study of Dissociative Electron-capture Processes in y-Irradiated Amino-acids

By P. B. AYSCOUGH,* K. MACH,† J. P. OVERSBY, and A. K. ROY (Department of Physical Chemistry, University of Leeds, Leeds 2)

DISSOCIATIVE electron-capture processes such as (1) are thought to be important in the low-

 $RX + e^- \rightarrow (RX^-) \rightarrow R^{\cdot} + X^-$ (1) temperature radiolysis of alkyl halides,¹ nitriles,² halogeno-carboxylic acids^{3,4} etc. where the reaction is favoured by the high electron affinity of X (halogen, CN, etc.). The resulting neutral alkyl radicals are readily detected by their e.s.r. spectra in the irradiated solid or when the electrons are generated photolytically in glassy matrices.⁴ The intermediate species RX⁻ have not however been positively identified.

An early suggestion⁵ concerning the radiolysis of amino-acids includes a similar reaction (2)

$$\operatorname{RCH}(\operatorname{NH}_{3}^{+})\operatorname{CO}_{2}^{-} + e^{-} \rightarrow \operatorname{RCH}(\operatorname{NH}_{3}^{+})\operatorname{CO}_{2}^{2-} \rightarrow \operatorname{RCH} \cdot \operatorname{CO}_{2}^{-} + \operatorname{NH}_{3}$$
(2)

since NH₃ is a major product and radicals of the structure RCHCO₂⁻ are commonly observed following γ -irradiation at room temperature.⁶ Recent reports of transient e.s.r. spectra observed at 77° k in γ -irradiated carboxylic and amino-acids and attributed to radical-ions such as CH₂(CO₂H)₂⁻ and NH₃+CH₂·CO₂²⁻ support this view.⁷

We have now examined the e.s.r. spectra of a group of amino-acids $\text{RCH}(\text{NH}_3^+)\text{CO}_2^-$ where R = H, Me, Et, $\text{CH}_2 \cdot \text{CO}_2 \text{H}$, and $\text{CH}_2 \cdot \text{SO}_3 \text{H}$. These have been γ -irradiated at 77°K and examined in single- or poly-crystalline form between 77° and 450°K and in frozen alkaline glasses between 77° and 160°K. We find evidence for transient radical-anions with $g = 2.0035 \pm 0.005$ in all the pure compounds but only for cysteic acid in the aqueous glasses. Salient features of the spectra are summarised in the Table.

Further details of the single-crystal spectra are described elsewhere^{3,8} and only the most important general conclusions are mentioned here. In each case the spectra can be attributed to a species with two interacting protons (possibly three for the glycine and β -alanine radical-anions). One of these is replaced by ²H in the ²H₃-compound and is presumably attached to the carboxyl group. The hyperfine anisotropy ($< \pm 3$ gauss) is typical of β -protons as is the dependence of the isotropic coupling on the orientation of the ·C-C-H and •C-O-H groups. At temperatures above 130°K the spectra change to those corresponding to the structure RCH·CO₂H [see reaction (2)] though the configuration is generally not precisely that observed at room temperature.

We therefore conclude that in all these compounds the species trapped initially at $77^{\circ}\kappa$ (a) are formed by electron capture and have the unpaired spin localised in the carboxyl group, (b) are probably stabilised by protonation, and (c) decay by loss of NH₃ to give radicals RCH·CO₂H which may subsequently abstract H from the parent molecule.

The second conclusion is supported by studies of γ -irradiated aqueous alkaline glasses containing up to 10^{-2} M-amino-acid. In these systems protonation is unlikely. Only e^- and O^- are observed at 77° κ in the absence of light, but when trapped electrons are remobilised by illumination with visible light or by warming to about 140° κ , radicals of the type RCH·CO₂⁻ are formed directly. Only when cysteic acid, HSO₃CH₂·CH(NH₃+)CO₂⁻,

† On leave from the University of Prague, Czechoslovakia.

	_			Hyperfine spectrum							Average hyperfine splittings (gauss)		
R			RCH(NH ₃ +)ĊO ₂ H− RCH(ND ₃ +)ĊO ₂ D−										
				Number of lines	Line separa- tions	Line width	Number of lines	Line separa- tions	Line width	$a^{ m H}_{eta_1}$	$a^{\mathrm{H}}_{\mathrm{\beta_2}}$	$a_{ m OH}^{ m H}$	
Нp				2	27	13	2ª	25	8	27	\sim 7	small	
Me				3	16	8	2ª	18	8	17.9		14.8	
Et				ĩ		21	18		10	<10	—	~ 15	
	10 774			ſĪ		20]a		5	<10		~ 15	
$CH_2 \cdot C$	CO₂H⁰	• •		$1\overline{2}$	27		2	27	8	27			
CH₂·S	SO ₃ H	••	••	3	16	< 5	2ª	17	< 5	16.5	_	14.6	

TABLE

E.s.r. spectra observed in γ -irradiated amino-acids RCH(NH₃+)CO₂- at 77°K

^a Subsidiary splittings also seen.

^b The spectrum of β -alanine, NH₃+CH₂CH₂CO₂⁻ is identical with that of glycine at 77° κ .

^c Two species seen, decaying at different rates.

is the solute is a spectrum characteristic of a radical-anion seen, and there is evidence to suggest that this may be formed by addition of e^- to SO₃⁻ rather than to CO₂^{-.8}

appears to rule out the possibility that the initially trapped species are the parent molecular cations, a possibility which had not been excluded in earlier studies.

The summation of evidence presented above

(Received, September 4th, 1967; Com. 945.)

¹ E. F. Bertin and W. H. Hamill, J. Amer. Chem. Soc., 1964, 86, 1301; R. F. C. Claridge and J. E. Willard, ibid.,

1965, 87, 4992. ² P. B. Ayscough, R. G. Collins, and T. J. Kemp, J. Phys. Chem., 1966, 70, 2220; P. B. Ayscough, H. Drawe,

³ A. K. Roy, Ph.D. thesis, Leeds University, 1966.

⁴ P. B. Ayscough, R. G. Collins, and F. S. Dainton, Nature, 1965, 205, 965.

⁵ W. M. Garrison, Radiation Res., Suppl., 1966, 4, 158.
 ⁶ See e.g., J. R. Morton, Chem. Rev., 1964, 64, 453.
 ⁷ H. C. Box, H. G. Freund, and K. T. Lilya, J. Chem. Phys., 1965, 42, 1471; H. C. Box, H. G. Freund, and E. E. Budzinski, J. Amer. Chem. Soc., 1966, 88, 658; N. Tamura, M. A. Collins, and D. H. Whiffen, Trans. Faraday Soc., 1966, 62, 2434; J. W. Sinclair and M. W. Hanna, J. Phys. Chem., 1967, 71, 84.

⁸ P. B. Ayscough and A. K. Roy, Trans. Faraday Soc., in the press.