Uranium(VI) Complexes of 8-Hydroxyquinoline and Derivatives

By A. CORSINI,* J. ABRAHAM, and M. THOMPSON

(Department of Chemistry, McMaster University, Hamilton, Ontario, Canada)

THE addition complexes of 8-hydroxyquinoline, $M(C_9H_6NO)_n, C_9H_6NOH$, have aroused considerable interest in regard to the nature of the forces binding the additional reagent molecule. Reports¹ suggesting that the extra molecule is an uncoordinated crystal-lattice component conflict with those^{2,8} suggesting that it is co-ordinated to the metal ion. A recent X-ray structure determination⁴ has shown that in $UO_2(C_9H_6NO)_2, C_9H_6NOH$, the extra molecule is co-ordinated to the uranium atom but, unlike the two bidentate ligands, through the phenolate oxygen only.

We now report the location of the acidic proton in the U^{VI} complex, a series of new U^{VI} complexes of 8-hydroxyquinoline derivatives, and a method involving [¹⁴C]-8-hydroxyquinoline for investigating the nature of other addition complexes.

The infrared spectrum of the 1:3 complex

exhibits two bands (an unusually broad band of medium intensity centred at about 2650 cm^{-1} and a very weak one at 2050 cm^{-1} , see Figure) which are not present in the sodium salt of the complex, the 1:2 complex $[UO_2(C_9H_6NO)_2]$ prepared thermally from the 1:3 compound, or in free 8-hydroxyquinoline. These bands (somewhat shifted) are present, however, in the hydrochloride salts of 8-hydroxyquinoline, its derivatives, quinoline, and pyridine. In pyridine hydrochloride, the bands (~2500, 2100 cm.⁻¹) are due to vibrational modes of >NH^{+,5,6} The broad 2500 cm.⁻¹ band is a composite band and its displacement from the normal >NH⁺ stretching frequency (~3200 cm.⁻¹) has been attributed to strong hydrogen bonding of the type $+N-H\cdots Cl.^{5,6}$. The extreme band-width is probably due to intermolecular interactions.⁶ The 2100 cm.⁻¹ band may represent a combination band between the scissoring frequency (~1600 cm.⁻¹) and a low internal or lattice frequency (~400 cm.⁻¹).⁶ The presence of the 2600 and 2050 cm.⁻¹ bands in the 1:3 compound leaves little doubt that the acidic proton is located on the ring nitrogen of the unidentate ligand and is hydrogen-bonded. Examination of Courtauld models (based on the

TABLE

Uranium(VI) complexes of 7-substituted derivatives of 8-hydroxyquinoline

Ligand	Complex ^a	Method ^b
7-Me	$UO_2(C_{10}H_8NO)_2, H_2O$ $UO_2(C_{10}H_8NO)_2, NH_2$	Dil. NH ₃ or NaOH Urea hydrolysis
2,7-di-Me 7-Bu ^t 5,7-di-Cl 5,7-di-Br	$\begin{array}{c} UO_{2}^{\circ}(C_{11}H_{10}^{\circ}NO)_{2}^{\circ}, H_{2}O^{\circ}\\ UO_{2}(C_{13}H_{14}NO)_{2}, (H_{2}O^{\circ})\\ UO_{2}(C_{9}H_{4}Cl_{2}NO)_{2}, Me_{2}CO \\ UO_{2}(C_{9}H_{4}Br_{2}NO)_{2}, Me_{2}CO \end{array}$	Dil. NH ₃ or NaOH Dil. NH ₃ Modification of procedure in ref. 1b

^a Composition determined by elemental analysis. Presence of H₂O, NH₃, or acetone confirmed by infrared spectroscopy.

^b In general, the complexes were prepared by the addition of a small excess of the ligand to an acid solution of uranyl nitrate, and adjustment of the final pH to 5–7 with dilute NH₃ or NaOH, or by urea hydrolysis.

FIGURE. Infrared spectra of (A) $UO_2(C_9H_6NO)_2$. C_9H_6NOH ; (B) 8-methoxyquinoline hydrochloride; (C) $UO_2(C_9H_6NO)_2$; (D) $UO_2(C_10H_8NO)_2$. NH₈; (E) 8hydroxyquinoline. Samples were prepared as mulls in hexachlorobutadiene (weak absorption at 2300 cm.⁻¹).

X-ray structure) shows that the hydrogen bond must involve the phenolate oxygen of the neighbouring bidentate ligand, to which the proton makes a very close approach. These results confirm the speculation of Hall, Rae, and Waters.⁴ Certainly, intermolecular hydrogen-bonding as suggested by Bullwinkel and Noble² cannot occur.

A survey of about 40 compounds in which $^+N-H\cdots O$ bonding occurs shows that the most probable N-O distance is $2\cdot 8-2\cdot 9$ Å.⁷ In the 1:3 compound, the N-O distance is $2\cdot 71$ Å,⁴ which suggests a strong hydrogen bond.

A number of 5-substituted derivatives of 8hydroxyquinoline (Me, Ph, acetyl, Cl, NO₂) also yield 1:3 complexes with U^{VI}, and the absorption bands characteristic of the hydrogen-bonded >NH⁺ are present in the infrared spectra. On the other hand, 7-substituted derivatives yield complexes in which the extra ligand is replaced by H₂O, NH₃, or acetone, depending on the conditions of preparation (Table). The diagnostic >NH⁺ bands are absent in the spectra. The $UO_2(C_9H_4NOX_2)_2$, acetone complexes (X = Cl, Br) were prepared by slight modification of the method that Moeller and Ramaniah report^{1b} as yielding 1:3 complexes. Their results appear to be fortuitous, arising because of the insolubility of

the dihalogeno-reagents in the solvent used. Using exactly their reported procedure, we found large amounts of co-precipitated reagent in the precipitate.

As revealed by examination of models, the failure of the 7-substituted derivatives to yield 1:3 complexes is due to steric repulsion between, (i) the $>NH^+$ proton and the 7-substituent of the neighbouring bidenate ligand, (ii) the α -proton of the monodentate ligand and the 7-substituent of the neighbouring ligand, and (iii) the 7substituent of the monodentate ligand and the α -proton of the neighbouring ligand. As a result of these repulsions, smaller co-ordinating species (e.g., H₂O, NH₃, acetone) present in solution can successfully replace the extra reagent molecule.

On treatment of $UO_2(C_9H_6ON)_2$ with a dichloroethane solution of [14C]-8-hydroxyquinoline, addition of the extra ligand occurs, the yield approaching 100% under appropriate conditions. When the product of this reaction is thermally re-converted into the 1:2 complex, the specific activity of the sublimed 8-hydroxyquinoline is significantly higher than that of the ligands in the residual 1:2 complex. This result shows that the additional reagent molecule is not equivalent to the two bidentate ligands. To determine whether the extra molecule is a unidentate ligand or a lattice component, the 1:3 compound was treated with a solution of [¹⁴C]-8-hydroxyquinoline. After a reasonable reaction time, little activity could be detected in the isolated product. This result is contrary to that expected for a lattice-component structure and indicates that the 1:3 compound is a molecular entity.

(Received, September 4th, 1967; Com. 947.)

¹ T. Moeller and M. V. Ramaniah, (a) *J. Amer. Chem. Soc.*, 1953, **75**, 3946; (b) T. Moeller and M. V. Ramaniah, *J. Amer. Chem. Soc.*, 1954, **76**, 5251; (c) J. H. Van Tassel and W. W. Wendlandt, *J. Amer. Chem. Soc.*, 1959, **81**, 813; (d) L. Pokras, M. Kilpatrick, and P. M. Bernays, *J. Amer. Chem. Soc.*, 1953, **75**, 1254. ² E. P. Bullwinkel and P. Nobel, jun., *J. Amer. Chem. Soc.*, 1958, **80**, 2955. ³ L. H. Van Tassel W. W. Wendlandt and F. Sturm, *Chem. Soc.*, 1961, **82**, 810; J. F. Tackett and

³ J. H. Van Tassel, W. W. Wendlandt, and E. Sturm, J. Amer. Chem. Soc., 1961, 83, 810; J. E. Tackett and D. T. Sawyer, Inorg. Chem., 1964, 3, 692. ⁴ D. Hall, A. D. Rae, and T. W. Waters, Acta Cryst., 1967, 22, 258.

⁵ R. C. Lord and R. E. Merrifield, *J. Chem. Phys.*, 1953, 21, 166; R. F. Evans and W. Kynaston, *J. Chem. Soc.*, 1962, 1005; R. H. Nuttall, D. W. A. Sharp, and T. C. Waddington, *ibid.*, 1960, 4965.

⁶ B. Chenon and C. Sandorfy, *Canad. J. Chem.*, 1958, **36**, 1181. ⁷ G. C. Pimentel and A. L. McClellan, "The Hydrogen Bond," Freeman, San Francisco, 1960, p. 289.