The Structure of Dichlorobis(pentane-2,4-dionato)rhenium(IV)

By C. J. L. LOCK* and CHE'NG WAN

(Department of Chemistry, McMaster University, Hamilton, Ontario, Canada)

ONE of the products obtained by the reaction of acetylacetone and oxotrichlorobis(triphenylphosphine)rhenium(v) was claimed to be $[\operatorname{ReCl}_2(\operatorname{C_5H_7O_2})]^{.1}$ A dimeric structure, which had two bridging acetylacetonate groups bonding through oxygen atoms, was suggested on the basis of molecular-weight determinations in solution, but no X-ray structural work has been reported so far.

We have determined the crystal structure of dichlorobis(pentane-2,4-dionato)rhenium(IV). Crystal data: $C_{10}H_{14}Cl_2O_4Re$, $M = 455\cdot34$, triclinic, $a = 8\cdot004 \pm 0\cdot01$, $b = 8\cdot536 \pm 0\cdot01$, $c = 7\cdot929 \pm 0\cdot01$ Å, $\alpha = 119^{\circ}21' \pm 10'$, $\beta = 92^{\circ}18' \pm 10'$, $\gamma = 56^{\circ}23' \pm 10'$, $U = 372\cdot3$ Å³, $D_{\rm m} = 2\cdot18 \pm 0\cdot02$ (by flotation), Z = 1, $D_{\rm c} = 2\cdot03$, space group $P \ \bar{1} \ (C_1^1, \operatorname{No.} 2)$.

Four layers perpendicular to [100] and five layers perpendicular to [121] were recorded with an integrating precession camera using Mo- K_{α} radiation and the intensities were estimated by means of a microdensitometer.

From Patterson projections down [100] and $[1\overline{21}]$, the positions of the heavier atoms (Re, Cl,

FIGURE. Structure of $\operatorname{Re}(C_5H_7O_2)_2\operatorname{Cl}_2$ projected along the c-axis. The standard error for the Re-Cl distance is about 0.02 Å, for the Re-O distance about 0.05 Å, and for the other atom-atom distances about 0.1 Å.

a	===	2·33 Å	f =	1•53 Å
b		2.04	g =	1.36
С		2.13	h =	1.56
đ	==	1.32	i =	1.63
е		1.31		
ab	=	89.7 (± 0.5)°	dh =	133 $(\pm 1)^{\circ}$
ac	=	$89.6(\pm 0.5)$	eg =	$122.5(\pm 1)$
bc	=	$90.9(\pm 0.5)$	ei ==	115 (± 2)
bd	===	$125 (\pm 1)$	fg =	129 (± 2)
се		128 (± 1)	h =	$122 (\pm 2)$
df	===	125 (+2)	i =	122 (± 2)

and O) were found and from the subsequent Fourier synthesis of electron density, the positions of all the other atoms (except hydrogen) were located. After preliminary Fourier refinement, co-ordinates and anisotropic temperature factors were refined by least-squares analysis to give a weighted reliability index of R = 8.8% for 1044 independent nonzero reflections. Bond lengths in Å and angles are shown in the Figure. The rhenium atom, which is at the centre of symmetry, is surrounded by a slightly distorted octahedron of four oxygen atoms which form a plane containing the rhenium atom and two trans-chlorine atoms at a slightly longer distance. The β diketone groups are bonded through the two oxygen atoms which is the commonest type of linkage in this kind of complex.²

The compound we examined was prepared in the same manner as that described previously.¹ We have no evidence for any dimer formation in the solid state, the shortest rhenium-rhenium distance being 7.93 Å.

Further indirect evidence supports the monomer Mass-spectrographic examination formulation. showed that the highest-molecular-weight peaks were caused by Re(acac)₂Cl₂⁺, Re(acac)₂Cl⁺, and $\operatorname{Re}(\operatorname{acac})_{2}^{+}$ and no peaks were found which could be assigned to a fragment containing two rhenium Infrared-spectral measurements do not atoms. preclude the presence of a bridged dimers as suggested by Grove et al.¹ However, the infrared spectrum of the solid is very similar to these of copper and palladium acetylocetonates³ and has no peaks in the region 1600-1700 cm.⁻¹ where they have been found for other transition-metal compounds containing β -diketone groups bridging through the y-carbom atom.4

We conclude that dichlorobis(pentane-2,4dionato)rhenium(IV) is not dimeric in the solid state.

(Received, August 25th, 1967; Com. 917.)

- ¹ D. E. Grove, N. P. Johnson, C. J. L. Lock, and G. Wilkinson, J. Chem. Soc., 1965, 490.
- P. Fackler, Progr. Inorg. Chem., 1963, 7, 361.
 K. Nakamoto, "Infra-red Spectra of Coordination Compounds," Wiley, New York, 1963, p. 219.
 D. Gibson, J. Lewis, and C. Oldham, J. Chem. Soc. (A), 1967, 72.